

 A new comp Central Ame company ha cost data and 	pany has wor prica, United is determine e:	n contracts to States, Europ d three potent	supply a produce be, and South ial locations fo	uct to customers in America. The or plants. Relevant
Plar	nt	Fixed	Variable	Production
Loca	ations	Costs	Costs	Capacity
Braz	zil	50,000	1,000	30
Phil	ippines	40,000	1,200	25
Mex	ico	60,000	1,600	35
company de per unit. Pro (in units per	ecides to bui oduction cap month) is:	Id and operate acities are in	e the plant. Va units per mont	riable costs are in \$ h. Customer demand
	Central America	United States	Europe	South America
Demand	18	15	20	12

	Decision Models Lecture 5 6
	Plant-Location Model
О	Indices:
	Let B represent the Brazil plant, and similarly use P (Philippines), M (Mexico), C (Central America), U (United States), E (Europe), and S (South America).
0	Decision Variables: Let
	$p_B = \#$ of units to produce in Brazil
	and similarly define p_P and $p_{M'}$ Also let
	x_{BC} = # of units to ship from Brazil to Central America,
	and define x_{BU} , x_{BE} ,, x_{MS} similarly.
0	Objective Function:
	The total cost is the sum of fixed, variable, and shipping costs.
	Total variable cost is:
	$VAR = 1,000 p_B + 1,200 p_P + 1,600 p_M$.
	Total shipping cost is:
	$SHIP = 900 x_{BC} + 900 x_{BU} + 700 x_{BE} + 500 x_{BS}$
	+ 700 x_{PC} +700 x_{PU} + 400 x_{PE} + 600 x_{PS}
	+300 x_{MC} + 400 x_{MU} + 700 x_{ME} + 900 x_{MS} .
	We will return to the total fixed cost computation shortly.

Decision Models Lecture 5 8	
Fixed-Cost Computation	
 Additional Decision Variables: To compute total fixed cost, define the binary plant-open variables: 	
$\int 1$ if the Brazil plant is opened (i.e., if $p_B > 0$)	
$y_B = 0$ if the Brazil plant is not opened (i.e., if $p_B = 0$)	
and define y_P and y_M similarly. Total fixed cost is:	
$FIX = 50,000 \ y_B + 40,000 \ y_P + 60,000 \ y_M$	
As it currently stands, the optimizer will always set the "plant open" variables to zero (so that no fixed cost will be incurred). We need constraints to enforce the meaning of these variables, e.g., $p_B > 0 \implies y_B = 1.$	
Why not add constraints to define the plant open variables, e.g., for Brazil,	
$y_B = IF (p_B > 0, 1, 0)$? Because =IF statements are <i>not linear</i> and they are <i>discontinuous</i> . Optimizers cannot solve such problems easily, if at all. What else can be done?	

	Decision Models Lecture 5 10
	Train Eocation integer Trogramming model
min V	AR + SHIP + FIX
0	Cost definitions:
	$(VAR \text{ Def.}) VAR = 1,000 \ p_B + 1,200 \ p_P + 1,600 \ p_M$.
	(SHIP Def.) SHIP = 900 x_{BC} + 900 x_{BU} + 700 x_{BE} +500 x_{BS}
	+ 700 x _{PC} +700 x _{PU} + 400 x _{PE} + 600 x _{PS}
	+ 300 x_{MC} + 400 x_{MU} + 700 x_{ME} + 900 x_{MS}
	(FIX Def.) $FIX = 50,000 y_B + 40,000 y_P + 60,000 y_M$
0	Plant production definitions:
	(Brazil) $p_B = x_{BC} + x_{BU} + x_{BE} + x_{BS}$
	(Philippines) $p_P = x_{PC} + x_{PU} + x_{PE} + x_{PS}$
	(Mexico) $p_M = x_{MC} + x_{MU} + x_{ME} + x_{MS}$
0	Demand constraints:
	(Central America) $x_{BC} + x_{PC} + x_{MC} = 18$
	(United States) $x_{BU} + x_{PU} + x_{MU} = 15$
	(Europe) $x_{BE} + x_{PE} + x_{ME} = 20$
	(South America) $x_{BS} + x_{PS} + x_{MS} = 12$
0	Modified plant capacity constraints:
	(Brazil) $p_B \leq 30 y_B$
	(Philippines) $p_P \le 25 y_P$
	(Mexico) $p_M \leq 35 y_M$
0	Binary variables: y_B , y_P , $y_M = 0$ or 1
0	Nonnegativity: All variables ≥ 0

5et Target Cell: \$1\$6 🔣	<u>S</u> olve
Equal To: O <u>M</u> ax O <u>Min</u> O <u>V</u> alue of: 0 By Changing Cells:	Close
Subject to the Constraints: \$B\$20:\$E\$20 = \$B\$22:\$E\$22 \$E\$5:\$E\$7 = binary	Options
\$F\$17:\$F\$19 <= \$H\$17:\$H\$19	<u>R</u> eset All

Max Iime: Image: Seconds OK Iterations: 100 Cancel Precision: 0.000001 Load Model Tolgrance: 0 % Save Model Convergence: 0.001 Help ✓ Assume Linear Model Use Automatic Scaing Default is 5 ✓ Assume Non-Negative Show Iteration Results Default is 5 Congent © Eorward Newton Conjugate	Max Iime: IOO seconds OK Iterations: 100 Cancel Precision: 0.000001 Load Model	
Iterations: 100 Cancel Precision: 0.000001 Load Model Tolgrance: 0 % Save Model Convergence: 0.001 Help Assume Linear Model Use Automatic Scaling Default is 5 Assume Non-Negative Show Iteration Results Default is 5 Cancel Privatives Search Change to 0 Tangent © Eorward © Newton Conjugate	Iterations: 100 Cancel Precision: 0.000001 Load Model	
Precision: 0.000001 Load Model Tolgrance: 0 % Save Model Convergence: 0.001 Help Assume Linear Model Use Automatic Scaing Default is 5 Assume Non-Negative Show Iteration Results Default is 5 Estimates Derivatives Search Change to 0 Tangent © Conjugate Conjugate Conjugate	Precision: 0.000001 Load Model	
Tolerance: 0 % Save Model Convergence: 0.001 Help ✓ Assume Linear Model Use Automatic Scains Default is 5° ✓ Assume Non-Negative Show Iteration Results Default is 5° ✓ Estimates Derivatives Search Change to 0 ✓ Igngent © Eorward © Newton © Conjugate		
Convergence: 0.001 Help ✓ Assume Linear Model Use Automatic Scaling Default is 5° ✓ Assume Non-Negative Show Iteration Results Default is 5° Estimates Derivatives Search change to 0 © Tangent © Conjugate Conjugate Conjugate	Tolerance: 0 % Save Model	
✓ Assume Linear Model ✓ Use Automatic Scaling Default is 5° ✓ Assume Non-Negative Show Iteration Results Default is 5° Estimates Derivatives Search Change to 0 ⓒ Tangent ⓒ Eorward ⓒ Newton ⓒ Newton ⓒ Quadratic ⓒ Conjugate ⓒ Conjugate	Con <u>v</u> ergence: 0.001 <u>H</u> elp	
✓ Assume Non-Negative ☐ Show Iteration Results Default is 5° Estimates Derivatives Search change to 0 © Tangent © Eorward © Newton © Quadratic © Conjugate	Assume Linear Model	
Estimates Derivatives Search change to 0 © Tangent © Eorward © Newton C Quadratic C Conjugate	Assume Non-Negative Show Iteration Results	afault is 5
Image: Tangent Image: Eprward Image: Newton Image: O Quadratic Image: C Quadratic Image: C Quadratic	Estimates Derivatives Search ch	ange to 0
C Quadratic C Central C Conjugate	• Tangent • Forward • Newton	

	Scena	rio Returns ar	nd Probabilitie	es	
		Table. (Mont	hly returns)		
	Prob.	Security 1	Security 2	Security 3	
Scenario 1	0.25	5.51%	1.95%	2.56%	
2	0.25	-1.24%	2.26%	0.16%	
3	0.25	5.46%	-4.07%	-0.64%	
4	0.25	-1.90%	3.59%	0.30%	
SecurityEconomA combi	analysts' ic/Financian nation of t	forecasts al models he above	Determe		
		Portfolio	Returns		
f scenario <i>i</i> occ	urs, what	is the return of th	ne portfolio (x ₁ ,	, x _n) ?	
he portfolio ref	urn if scei	nario <i>i</i> occurs, de	enoted r_i , is		
	r,	$=\sum_{i=1}^{n}r_{ii}x_{i}$.		(1)	

					Decision Models Lecture 5 22
		S	ummary		
Ţ	able. (N	Monthly retur	ns expressed	d in percent)	
	Prob.	Security 1	Security 2	Security 3	
Scenario1	0.25	5.51	1.95	2.56	
2	0.25	-1.24	2.26	0.16	
3	0.25	5.46	-4.07	-0.64	
4	0.25		3.59	0.30	
A portfolio of these three securities, denoted (x_1, x_2, x_3) , must satisfy:					
• (Budget) $x_1 + x_2 + x_3 = 1$					
(No short sales) $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0,$					
and the portfolio returns in each scenario are given by:					
Scenario 1: $r_1 = 5.51 x_1 + 1.95 x_2 + 2.56 x_3$					
Scenario 2: $r_2 = -1.24 x_1 + 2.26 x_2 + 0.16 x_3$					
Scenario 3: $r_3 = 5.46 x_1 - 4.07 x_2 - 0.64 x_3$					
Scenario 4: $r_{4} = -1.90 x_{1} + 3.59 x_{2} + 0.30 x_{3}$					
The average portfolio return is given by:					
r	= AVE	RAGE $(r_1, r_2,$	r_{3}, r_{4}		
The standa	ard devi	iation of the r	portfolio retu	rn (i.e., the ris	sk) is:
S	D = ST	DEVP (r_1, r_2, \cdot)	r_{2}, r_{4}	· ·	,
		× 1, 2,	3, 4,		

Equal To: O Max O Min O Value of: 0	10
By changing color	Close
\$F\$5:\$H\$5 Guess Subject to the Constraints:	Options
\$J\$5 = \$J\$7 	<u>R</u> eset All
	<u>H</u> elp

Decision Models Lecture 5 32
Summary
 Integer Programming - A Plant Location Example Portfolio Optimization Modeling uncertainty with scenarios Definitions of reward and risk Tradeoff between two conflicting objectives The Efficient Frontier Setting up the Model Solving the Model
Looking at the Results
For next class
 Optional readings: "Exploring the New Efficient Frontier" and "Asset Allocation in a Downside-Risk Framework" in the readings book.