CALCIUM-DEPENDENT INACTIVATION OF NEURONAL CALCIUM CHANNELS

Thomas Budde, Sven Meuth and Hans-Christian Pape

Calcium ions are ubiquitous intracellular mediators of numerous cellular processes. One of the main mechanisms of Ca^{2+} entry into the cell involves the opening of Ca^{2+} channels in the plasma membrane. To effectively control Ca^{2+} signalling, Ca^{2+} channels inactivate rapidly by a mechanism that depends on an elevation of intracellular Ca^{2+} within tens of nanometres of the channel pore. A structural understanding of this mechanism will provide a framework for understanding the regulation of Ca^{2+} entry and accumulation in neurons. Recent physiological, biochemical and molecular studies have yielded new insights into the regulation of neuronal Ca^{2+} channels.

Voltage-gated Ca²⁺ channels (VGCCs) are a large family of integral membrane proteins that control the selective flow of Ca²⁺ ions down their electrochemical gradient in response to changes in membrane potential (BOX 1; TABLE 1). Ca²⁺ ions control processes as diverse as cell proliferation, neuronal development and transmitter release^{1,2}. All of these functions have to be accomplished within a narrow range of Ca2+ concentrations, as this cation can be toxic if its level is not tightly controlled³. So, effective mechanisms, such as pumps and exchangers, remove Ca²⁺ ions from the cytoplasm, restoring the resting concentration once these ions have fulfilled their signalling role. But in addition to these pumps and exchangers, several mechanisms of channel inactivation have appeared during evolution to control Ca²⁺ entry in the face of ongoing electrical activity. So, Ca²⁺ channels can inactivate by three different mechanisms: Ca2+dependent inactivation (CDI), fast voltage-dependent inactivation (VDI) and slow VDI.

In the case of CDI, Ca^{2+} ions restrict their own entry into the cell by one of the main routes of Ca^{2+} influx, the VGCCs (FIG. 1a). This CDI provides crucial negative feedback in numerous neuronal and non-neuronal settings. The mechanisms that underlie this feedback inhibition have been under investigation for more than 20 years^{4.5}, but it was only recently that calmodulin (CaM) was identified as an important Ca^{2+} sensor that mediates CDI^{6-9} . Here, we review the various mechanisms that have been proposed to mediate CDI, including the involvement of the cytoskeleton, the role of phosphorylation–dephosphorylation processes, and the participation of Ca^{2+} -binding proteins. We then summarize the functional significance of CDI. We conclude by proposing an integrative model of this phenomenon, and suggest some future approaches to the study of CDI. For a detailed discussion of the mechanisms that underlie VDI (BOX 2), we refer the interested reader to REFS 10,11.

Electrophysiological hallmarks of CDI

Brehm and Eckert⁴ were the first to study the effect of the local Ca^{2+} chemistry on the function of VGCCs, and they used several criteria to identify CDI. Their experiments in *Paramecium* showed that inactivation was faster in solutions that contained Ca^{2+} than in solutions containing Ba^{2+} . Similarly, they found that Ca^{2+} buffers reduced inactivation, and that the inactivation curve obtained with a double-pulse protocol was U-shaped (see below). On the basis of these findings, they proposed the existence of a Ca^{2+} -dependent mechanism for the inactivation of *Paramecium* Ca^{2+} channels. Similar results were obtained subsequently in molluscan neurons^{5,12} and in other ciliates¹³.

Otto-von-Guericke-Universität, Institute of Physiology, Leipziger Straße 44, D-39120 Magdeburg, Germany. Correspondence to T.B. e-mail: thomas.budde@ medizin.uni-magdeburg.de doi:10.1038/nrn959

Box 1 | Molecular composition of VGCCs

Members of the voltage-gated Ca^{2+} channel (VGCC) $Ca_v 1$ and $Ca_v 2$ families consist of a pore-forming $\alpha 1$ -subunit, which has four domains (I–IV), each containing six transmembrane segments (S1–S6) and a re-entrant P-loop. The $\alpha 1$ -subunit is associated with an intracellular β -subunit and with an $\alpha 2$ -subunit, which is entirely extracellular and is linked to the membrane by disulphide bonding to a transmembrane δ -subunit⁹⁷. In some channels, the complex is completed by a γ -subunit (not shown). Members of the $Ca_v 3$ family might contain only a single $\alpha 1$ -subunit; however, the exact subunit composition of $Ca_v 3$ channels is not clear. β -subunits increase the membrane expression of $\alpha 1$ -subunits, tune channel activation and inactivation properties, and reduce channel regulation by heterotrimeric G proteins⁹⁸. In the figure, partially overlapping regions that might be involved in G-protein and β -subunit binding are marked as green and

So, what are the identifying criteria for CDI? To detect its occurrence, several hallmarks of CDI can be probed. First, CDI tends to be fast (FIG. 1b). Channel inactivation is evidenced as a decay of current during prolonged depolarization. The current amplitude at the end of a depolarizing test pulse is divided by the peak current amplitude to define an inactivation ratio, providing a measure of the degree of inactivation. L-type Ca²⁺ channels — the prototypical molecular species that shows CDI (TABLE 1) — are usually subject to a fast CDI and a slower VDI¹⁴.

Second, CDI normally results in a U-shaped inactivation curve (FIG. 1d). The approach of choice to measure this inactivation curve is a double-pulse protocol^{4.5} (FIG. 1b), in which a conditioning voltage step to varying potentials is followed by a brief gap and a test pulse to a fixed voltage. The voltage of the test pulse is set to evoke maximal current amplitude, and serves to reveal the number of channels that can be activated. Conditioning steps to very positive or negative voltages evoke minimal Ca^{2+} currents, and yield near maximal Ca^{2+} currents on the test pulse (see FIG. 1 for further details)¹⁵. By contrast, a conditioning step to the maximum of Ca^{2+} current activation evokes maximal Ca^{2+} entry, and results in a minimal current on the test pulse. This reduction occurs as a result of CDI, and increases in the extracellular Ca^{2+} concentration yield faster inactivation¹⁶. Consequently,

Table 1 Classification and inactivation profiles of VGCCs					
Native current	α1-Subunit subtypes	Inhibitors	Activation profile	Inactivation profile*	Ca ²⁺ -dependent inactivation
P/Q-type [‡]	α _{1A} (Ca _v 2.1)	ω-Agatoxin IVA	High voltage	Moderate/slow	Yes/no§
N-type	$\alpha_{_{1B}}$ (Ca _v 2.2)	ω-Conotoxin GVIA SNX-111	High voltage	Fast	Yes/no
L-type	$\begin{array}{l} \alpha_{_{1C}} (Ca_v 1.2) \\ \alpha_{_{1D}} (Ca_v 1.3) \\ \alpha_{_{1F}} (Ca_v 1.4) \\ \alpha_{_{1S}} (Ca_v 1.1) \end{array}$	Dihydropyridines Phenylalkylamines Benzothiazepines	High voltage	Moderate/slow	Yes
R-type	$\alpha_{_{1E}}$ (Ca $_{_V}$ 2.3)	SNX-482	High voltage	Fast/moderate	No
T-type	$\alpha_{1G} (Ca_{V}3.1)$ $\alpha_{1H} (Ca_{V}3.2)$ $\alpha_{1I} (Ca_{V}3.3)$	Ethosuximide Mibefradil Kurtoxin	Low voltage	Very fast	No

*The inactivation of specific voltage-gated Ca²⁺ channels (VGCCs) might differ between expression systems and native cells. Furthermore, there might even be differences between neuronal cell types. ¹A single α 1-subunit underlies both P- and Q-type Ca²⁺ currents. Q-type Ca²⁺ current can be generated by several independent mechanisms (β -subunits, alternative splicing, post-translational modifications). So, the categorization of P/Q-type currents should be treated with caution. ⁸In thalamocrtical relay neurons, P-type currents are not controlled by Ca²⁺-dependent inactivation. ^{II}Differing results have been reported. GH₃ CELLS A neural cell line that is derived from the rat anterior pituitary gland. the amplitude of the current evoked by the test pulse typically shows a U-shaped dependency on the conditioning-pulse potential in current–voltage (I-V) plots (FIG. 1d), and the maximal rate of inactivation occurs near the peak of the I-V relationship. However, it is important to note that a U-shaped inactivation curve might result from voltage-dependent processes^{17–20}, and so does not necessarily indicate CDI.

Another hallmark of CDI is the effect of Ba^{2+} as charge carrier. As Ba^{2+} is typically less effective than Ca^{2+} at inactivating the channels, the use of Ba^{2+} as the

Figure 1 | Electrophysiological hallmarks of the CDI of VGCCs. a | Simplified scheme of Ca2+-dependent inactivation (CDI), illustrating the autoinhibitory effect of Ca2+ entry through voltage-gated Ca²⁺ channels (VGCCs). **b–e** | Whole-cell Ca²⁺ (**b**) and Ba²⁺ (**c**) currents evoked by double-pulse protocols in thalamocortical relay neurons. In this protocol, a conditioning voltage step to varying potentials is followed, after a brief gap, by a test pulse to a fixed voltage. The voltage of the test pulse is set at a value to evoke maximal current amplitude. A conditioning step to a value close to or positive to the Ca2+ reversal potential yields a near-maximal Ca2+ current amplitude during the test pulse (b, green trace). A similar maximal test current amplitude can be obtained from a negative conditioning potential of -50 mV, during which nearly all Ca2+ channels are closed (b, blue trace). By comparison, a conditioning step that elicits maximal Ca2+ current activation results in a decrease in current amplitude on the test pulse (b, red trace) owing to CDI Consequently, the test current amplitude typically shows a U-shaped dependency on the conditioning-pulse potential in current-voltage (I-V) plots (d, blue line). With Ba2+ as the charge carrier, the time-dependent current decay (b) and the U-shaped dependency of the test current amplitude on the conditioning-pulse potential (d, blue line) are strongly reduced (c,e). In the experiments shown in d and e, current was normalized for the maximal inward current (negative sign). Owing to this normalization procedure, the inactivation curve reveals an inverted U-shape with Ca2+ as the charge carrier, but not with Ba2+

principal charge carrier results in a reduction in the rate of inactivation and a decrease in the inactivation ratio, and to changes in the U-shape of the inactivation curve (FIG. 1c,e). However, it is important to note that the inactivation curve for Ba^{2+} currents can be U-shaped — Ba^{2+} can bind to the inactivation site of L-type Ca^{2+} channels, giving rise to Ba^{2+} -dependent inactivation²¹.

CDI can be retarded by increasing the Ca2+-buffering capacity of the cytoplasm through the introduction of exogenous buffers⁴. Importantly, the effect of exogenous Ca²⁺ buffers and the type of buffer that can interfere with CDI provide information about the distance between the source of Ca²⁺ and the Ca²⁺-binding site, and in turn, about the mechanism of CDI. A weak effect of exogenous chelators has been interpreted as evidence for Ca2+ acting very close to the channel protein²², whereas a clear reduction of CDI by exogenous chelators has been taken to indicate a more distant site of Ca²⁺ action^{23–27}. Furthermore, different Ca²⁺ buffers have different capabilities to buffer Ca²⁺ close to the channel. In this respect, BAPTA is believed to buffer $Ca^{\scriptscriptstyle 2+}$ effectively within a distance as small as 30 nm from the mouth of the inner channel ²⁸. In the case of EGTA, a substantial buffering effect is observed only 100 nm or more from the channel protein owing to its slower rate of Ca²⁺ binding.

Last, in addition to macroscopic currents, singlechannel recordings can also be used to confirm the occurrence of CDI. When compared with Ba²⁺ currents, unitary L-type Ca²⁺ currents are smaller in amplitude and the unitary channel openings less frequent, with only rare openings after several minutes^{29,30}.

Inactivation profiles of VGCC subtypes

The kinetic properties of current inactivation differ significantly between different Ca²⁺ channel subtypes (TABLE 1). The α 1-subunit, which forms the channel pore, can be directly inactivated (BOX 1), whereas the β -subunits have an important modulatory role in the inactivation process^{31,32}. CDI has been shown to occur, at least partially, in the case of several VGCC α 1-subunits (FIG. 2; TABLE 1).

It is generally accepted that L-type Ca²⁺ channels in cardiac and smooth muscle cells inactivate primarily by rapid CDI. The α 1-subunits that underlie neuronal L-type Ca²⁺ currents (Ca_v1.2 and Ca_v1.3) are widely distributed in the nervous system^{33,34}. It therefore comes as no surprise that the CDI of L-type Ca²⁺ channels occurs in several neuronal cell types, including dorsal root ganglion (DRG) neurons, thalamic neurons and neural cell cultures (for example, GH₃ CELLS)^{35,36}. Furthermore, investigations of L-type Ca²⁺ channels have led to the identification of CaM as the Ca²⁺ sensor of Ca_v1.2 Ca²⁺ channels (see below).

Akin to Ca_v1.2 channels, the α 1-subunit of Ca_v2.1 channels, which underlie neuronal P/Q-type Ca²⁺ currents, is subject to feedback regulation by Ca²⁺/ CaM⁶. So, neuronal P/Q-type Ca²⁺ currents also show CDI in native cells and in heterologous expression systems^{35,37}.

REVIEWS

EF HAND

A Ca²⁺-binding domain, originally identified in parvalbumin, that is also known as the helix–loop–helix domain. The loop can accommodate Ca²⁺ by coordination through several amino acids in a pentagonal pyramid.

IQ MOTIF

A small structural domain that mediates interactions with calmodulin. The motif only loosely defines the amino-acid sequence at 5 of 11 possible residues. Different IQ domains bind calmodulin at varying intracellular Ca²⁺ concentrations or independently of Ca²⁺.

IFM MOTIF

A cluster of three hydrophobic amino acids located within the inactivation loop between domains III and IV that is required for fast Na⁺ channel inactivation.

Box 2 | Voltage-dependent inactivation of VGCCs

As for Na⁺ and K⁺ channels, the voltage dependency of inactivation of voltage-gated Ca²⁺ channels (VGCCs) is based mainly on the voltage dependency of activation, because inactivation depends primarily on the state of the channel, rather than on voltage directly. This is evident from the fact that, for T-type Ca²⁺ channels or for Ba²⁺ currents through L-type Ca²⁺ channels, inactivation usually increases monotonically with depolarization, saturating at voltages where the channels are fully activated. The fast inactivation of Na⁺ and K⁺ channels occurs predominantly through the physical occlusion of the pore by cytoplasmic gating particles⁹⁹. K⁺ channels have an amino-terminal ball (the inactivation ball) that is connected through a flexible linker of more than 30 amino acids (the chain) to the rest of the channel protein. By binding to an acceptor site on the α -subunit, the ball is supposedly capable of physically plugging the pore during channel inactivation (the 'ball and chain' model of K+ channel inactivation). For Na+ channels, a similar model has been proposed that involves the IFM MOTIF as the inactivation particle (the 'hinged lid' model of Na+ channel inactivation). For VGCCs, the molecular determinants of voltage-dependent inactivation (VDI) are more widely spread over the channel protein and are still not fully understood. Different parts of the channel, including pore-forming transmembrane segments (particularly the S6 regions), intracellular loops, intracellular domain linkers and the carboxyl terminus, seem to be involved in VDI. Structural concepts involving a distortion of the four pore-forming S6 segments, and the intracellular linker between domains I and II as an inactivation particle, have been considered^{10,11}. Although these are molecular correlates of fast VDI, VGCCs show a slow inactivation state that they might enter from the open or fast-inactivated state. The molecular determinants of slow VDI are not known. Both fast and slow VDI are modulated by intracellular β-subunits.

CDI has also been described for N-type Ca²⁺ currents in DRG neurons and GH₃ cells^{36,38-40}. However, the CDI of N-type Ca²⁺ channels is still a matter of debate. Although the unusual VDI properties of N-type Ca²⁺ channels are sufficient to explain the occurrence of a U-shaped inactivation curve^{17,19}, a CDI mechanism has been suggested to occur in a BAPTA-inaccessible space in the pore⁴⁰.

Other types of VGCC typically show no CDI. In the case of the Ca_v3 family (TABLE 1), this is corroborated by the lack of Ca^{2+} -binding and CaM-binding domains — EF HANDS and IQ MOTIFS, respectively (see below).

Figure 2 | **Inactivation profile of VGCC subtypes in central neurons.** Native Ca²⁺ currents through voltage-gated Ca²⁺ channels (VGCCs) recorded from thalamocortical relay neurons and isolated through the use of specific blocking agents. Currents were elicited under voltage-clamp conditions by an 800 ms depolarization to +10 mV from a holding potential of –50 mV. Note the unique inactivation profile of each component. Only L-type and Q-type Ca²⁺ currents can be described by a two-exponential function, with the early fast phase of current decay governed by Ca²⁺-dependent inactivation (CDI)³⁵. A single thalamocortical relay neuron can express all high-voltage activated (HVA) Ca²⁺ channel subtypes. Although the exact cellular localization of different α 1-subunits is not yet known, thalamocortical relay neurons seem to fit into a general scheme of localized in different cell regions to serve different functions². It should be noted here that accessory proteins might markedly affect the kinetic signature of a particular α 1-subunit. So, in thalamocortical relay neurons, kinetic properties were used as only one of several criteria to link CDI to different VGCC subtypes³⁵.

Mechanisms of CDI

The endoplasmic reticulum. In cardiac muscle cells, there is a close functional coupling between L-type Ca²⁺ channels in the plasma membrane and intracellular Ca2+release channels of the ryanodine receptor (RyR) type in the membrane of the sarcoplasmic reticulum (SR)⁴¹. This highly localized interaction leads to the release of Ca²⁺ from intracellular Ca²⁺ stores in a process known as Ca²⁺-induced Ca²⁺ release (CICR)⁴², which is followed by cellular contraction. Because of this close coupling, it is not surprising that L-type Ca2+ channels are inactivated by Ca²⁺ release from the SR⁴¹ (FIG. 3). Furthermore, it is possible to distinguish two phases in the CDI of cardiac Ca²⁺ channels: an early fast phase that depends on Ca²⁺ released from the SR, and a late slow phase that depends on Ca²⁺ flow through VGCCs⁴³. In neurons, there is also a close functional coupling between L-type Ca2+ channels and RyRs44. Although a contribution of CICR to CDI has not been tested in neurons as yet, CICR has important functional roles in these cells⁴⁵. So, CICR might be at least partially involved in the CDI of neuronal Ca²⁺ channels.

Phosphorylation and dephosphorylation. An early breakthrough in our understanding of the mechanisms of CDI was the finding that promoting the dephosphorylation of VGCCs in molluscan neurons caused a significant increase in the rate of VGCC inactivation. These findings led to the hypothesis of an enzymatic mechanism of CDI²⁴. Subsequent studies in mammalian neurons led to the proposal of an antagonistic regulation of VGCC phosphorylation by cyclic-AMP-dependent protein kinase (PKA) and the protein phosphatase calcineurin (PP2B). This antagonistic regulation is now considered to be a general principle of CDI in invertebrates and higher vertebrates^{30,46}.

Calcineurin is an abundant protein phosphatase that is directly activated by Ca^{2+} and CaM (BOX 3). Protein phosphatase 1 (PP1) is another Ca^{2+} -regulated enzyme, but this regulation occurs only indirectly, through calcineurin (FIG. 3). In the original model of the enzymatic mechanism of CDI in mammalian neurons⁴⁶, calcineurin

Figure 3 | Regulation of L-type Ca2+ channels by Ca2+ and phosphorylationdephosphorylation reactions. Ca2+ entering the cell through an L-type Ca2+ channel might induce Ca2+-dependent inactivation (CDI) by interfering directly with the channel complex. As shown for cardiac L-type channels, the Ca²⁺ responsible for inducing CDI might be released from the endoplasmic reticulum (ER) through ryanodine receptors (RyRs) in a process called Ca2+ induced Ca2+ release (CICR)43. In addition, CDI might be induced by dephosphorylation of the channel at Ser1928 (REFS 47,48). This reaction is mediated by the protein phosphatase calcineurin (PP2B)⁴⁶, an enzyme that is activated by Ca²⁺ and calmodulin (CaM)¹⁰⁰. The effect of calcineurin might be exerted by protein phosphatase 1 (PP1), which is disinhibited by calcineurin¹⁰⁰. In mammalian neurons, Ca, 1.2 channels are dephosphorylated by PP2A, which is closely associated with the channel⁶². To effectively control channel activity by phosphorylation-dephosphorylation, the counteracting cyclic-AMP-dependent protein kinase (PKA) is also closely targeted to the channel through microtubule-associated protein 2 (MAP2)⁵⁰. As has been shown in thalamocortical relay neurons, the phosphorylation of L-type Ca2+ channels by PKA blocks CDI53 PKA might be stimulated through different G-protein-coupled receptor (GPCR) cascades. For example, the stimulation of β -adrenoceptors leads to G_s-mediated activation of adenylyl cyclase (AC), increased cAMP production and, finally, stimulation of PKA. In hippocampal pyramidal cells, the β_2 -adrenoceptor, G_s, AC, Ca_v1.2, PKA and PP2A form a heteromeric signalling complex⁸⁹ Together with further components, such as CaM, cytoskeletal proteins, calcineurin and PP1, this complex might be required for the expression of CDI. Black arrows indicate the movement of Ca2+ and cellular metabolites. Green and red arrows indicate activation and inhibition, respectively. It should be noted here that the figure combines results obtained from cardiac cells (CDI induction by CICR) and neuronal cells (the β_2 -adrenoceptor pathway in hippocampal pyramidal cells). It is therefore a matter of speculation at present whether all of these events take place in neurons. [Ca2+], intracellular concentration of Ca2+

> was proposed to stimulate PP1 activity by the dephosphorylation of an endogenous inhibitor — inhibitor 2 — and the removal of the phosphorylation-dependent inhibition of PP1 activity. As a consequence, PP1 was thought to dephosphorylate L-type Ca²⁺ channels, thereby inducing CDI⁴⁶. In addition, phosphodiesterase and L-type Ca²⁺ channels are substrates of calcineurin and PKA, increasing the complexity of Ca²⁺ channel regulation by Ca²⁺ and cAMP⁴⁶.

> In recent years, some aspects of this general scheme have been confirmed, whereas others remain controversial. In addition, novel aspects of the regulation of VGCCs by phosphorylation have emerged. So, evidence for the direct phosphorylation of neuronal L-type Ca²⁺

channels by PKA became available only after it was realized that the full-length form of Ca_v1.2 could be proteolytically truncated at its carboxyl terminus by the Ca²⁺-dependent protease calpain^{47,48}. Only the long form of Ca₁.2 is effectively and stoichiometrically phosphorylated at Ser1928 by PKA (FIG. 3). Furthermore, in mammalian central neurons, microtubuleassociated protein 2B (MAP2B) is associated with Ca_v1.2 channels, directly targeting PKA to a VGCC type that is governed by CDI⁵⁰ (FIG. 3). MAP2 is a cytoskeletal molecule that is expressed predominantly in neurons, and participates in the stabilization of microtubules and the anchoring of signalling enzymes^{49,51}. MAP2 co-purifies and interacts directly with PKA⁵². The biochemical and molecular identification of VGCCs closely complexed with PKA has been corroborated by electrophysiological findings that show a clear reduction of CDI after stimulation of the PKA pathway in different neural cell types^{30,53}.

Whereas the modulation of CDI by PKA has received much experimental support, the involvement of calcineurin is still a matter of debate. Although there is evidence for the co-localization of calcineurin and VGCCs at the plasma membrane in neurons⁵⁴, electrophysiological evidence for and against the calcineurin hypothesis of CDI has been found in different neuronal cell types^{36,38,53,55–57}. In this respect, we should mention that assessment of the role of calcineurin in CDI in native cells might be complicated by at least two factors⁵⁸. First, the selectivity of several of the frequently used phosphatase inhibitors is crucial, because a given compound might act on several phosphatase subtypes and, in addition, their effects on other proteins have to be taken into account. Second, calcineurin could exert its physiological effect through PP1.

Although the involvement of calcineurin in CDI remains unclear, other phosphatases, such as PP2A, have come into view. The serine/threonine phosphatases PP1 and PP2A have been shown to regulate cardiac L-type Ca²⁺ channels^{59–61}. Furthermore, PP2A directly binds to Ca_v1.2 channels and reverses the phosphorylation of Ser1928 in the rat brain⁶² (FIG. 3). Indeed, the use of PP1/PP2A blockers in neurons results in a clear decrease in total Ca²⁺ current inactivation⁵³.

The overall conclusion from these findings is that dephosphorylation seems to be a potent mediator of CDI in neurons of the mammalian nervous system.

The cytoskeleton. The original calcineurin model pointed to a site of Ca^{2+} action that is not part of the channel protein. Indeed, the finding that cytoskeletal stabilizers strongly reduce CDI in neurons indicated that another site of Ca^{2+} binding that is distant from the site of Ca^{2+} entry (that is, an EGTA-sensitive site) might exist. Several studies in neurons from different species have shown that the CDI of VGCCs is sensitive to the state of the cytoskeleton^{20,26,27,63}. However, the mechanism of CDI modulation by the cytoskeleton is unclear. Cytoskeletal integrity is one possible mechanism by which Ca^{2+} ions could act on the channel, as both microtubule and microfilament components of the

Box 3 | Ca2+-binding proteins

Calcineurin, or protein phosphatase 2B (PP2B), is a Ca²⁺-dependent protein phosphatase that is regulated by calmodulin (CaM) and accounts for up to 1% of total mammalian brain protein¹⁰⁰. The protein is a heterodimer of one catalytic (CnA) and one regulatory (CnB) subunit. Although CnA has high homology with other protein phosphatases, the CnB subunit belongs to the EF-hand-containing Ca²⁺-binding proteins. The binding of Ca²⁺ to CnB is relatively ineffective at stimulating phosphatase activity. With CaM also bound to the enzyme, phosphatase activity is maximal, indicating high cooperativity.

CaM is a small soluble protein of 17 kDa that is highly conserved throughout evolution. It accounts for about 0.5% of brain protein, and about half of the total amount of CaM is associated with membranes. CaM functions as a monomer with two pairs of EF hands. So, CaM can bind a maximum of four Ca²⁺ ions. The amino-terminal (EF hands 1 and 2) and the carboxy-terminal (EF hands 3 and 4) pairs of EF hands form two separate lobes, and the two lobes are connected by an eight-turn α -helix, giving the whole CaM protein the appearance of a dumb-bell (FIGS 4 and 5). Many unrelated ion channels (ligand-gated channels, Ca²⁺-activated K⁺ channels, Trp (transient receptor potential) channels and intracellular Ca²⁺-release channels) have been found to be directly associated with CaM, leading to the idea of CaM as a channel subunit ¹⁰¹. In all cases, the mechanisms of channel modulation by CaM are different.

High-affinity Ca^{2+} -binding proteins (CBPs), such as parvalbumin, calretinin and calbindin- D_{28k} , contain two or more EF-hand-type Ca^{2+} -binding sites, and have been suggested to be important in rapidly buffering Ca^{2+} at the site of Ca^{2+} entry¹. In addition, CBPs have been considered as Ca^{2+} transporters and/or CaM-like transducers of Ca^{2+} signals to target proteins¹⁰². Furthermore, the removal of Ca^{2+} -dependent inactivation (CDI) by exogenous Ca^{2+} buffers indicates a possible role of such endogenous binding proteins in this type of feedback control. Indeed, the inclusion of calbindin- D_{28k} in the internal recording solution during WHOLE-CELL PATCH-CLAMP RECORDINGS effectively disrupts CDI in hippocampal granule cells and thalamocortical relay cells^{92,103}. Although the exact concentration of exogenous CBPs at their site of action is not known, it seems that the protein reaches sufficiently high levels around the point of Ca^{2+} entry. The available data are also consistent with a close physical association between CBPs and voltage-gated Ca^{2+} channels, as has been shown for other EF-hand proteins, such as CaM and sorcin¹⁰⁴.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell-cell junctions, including synapses. It can bind to the carboxyl termini of proteins or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs large, zona occludens 1).

SH3 DOMAIN Src-homology domains are involved in interactions with phosphorylated tyrosine residues on other proteins (SH2 domains) or with prolinerich sections of other proteins (SH3 domains). cytoskeleton are disrupted by increases in intracellular Ca²⁺ levels⁶⁴. In hippocampal neurons, the microtubule stabilizer taxol and the microfilament stabilizer phalloidin were found to reduce CDI^{27,63}. A possible interpretation of these results is that Ca²⁺-dependent destabilization of cytoskeletal elements that have a structural relationship with the channel leads to CDI. More generally, a model has been proposed in which microtubules stabilize an actin lattice that is contiguous with the plasma membrane²⁷. This microfilament lattice is thought to contribute to VGCC localization and could bind directly to the channel or to a closely associated protein. One site of contact of VGCCs with microtubulin in the mammalian brain is the PKA–MAP2 complex⁵⁰.

VGCC β -subunits are further elements with which the cytoskeleton can interact. A structural model showed that the $\beta 1_b$ -subunit contains three distinct domains that have been shown to participate in protein–protein interactions⁶⁵. These domains included a PDZ DOMAIN, an SH3 DOMAIN and a guanylyl kinase domain. These domains give the $\beta 1_b$ -subunit the molecular signature of membrane-associated guanylyl kinase (MAGUK) proteins, which are involved in membrane-protein anchoring^{66,67}. So, the targeting of VGCCs to the cytoskeleton through MAP2 and β -subunits might be important for cytoskeleton-dependent CDI and the incorporation of these channels into large CDI-related protein assemblies (see below). It is interesting to note that the downregulation of NMDA (*N*-methyl-_D-aspartate) receptor channels by the Ca²⁺-dependent depolymerization of the channels from actin filaments has also been found in hippocampal neurons, and has been proposed as an important mechanism of ion channel arrest during hypoxia in vertebrate neurons^{68,69}.

From these observations, it is tempting to conclude that the model of CDI driven by destabilization of the cytoskeleton might be relevant to both invertebrate and mammalian neurons.

The search for a Ca²⁺ sensor. Dephosphorylation and second-messenger production are slow processes that might modulate CDI on a timescale that is not fast enough to constitute the primary inactivation mechanism⁷⁰. So, CDI mechanisms that are associated with the direct binding of Ca²⁺ to the inner surface of the membrane have been explored to explain the fast time course of this process in electrophysiological recordings. As a result, several models that involve the direct binding of Ca²⁺ to the channels have been proposed^{70–72}. These include 'domain' models, in which the rapid filling of hemispherical regions (domains) of elevated Ca²⁺ levels only underneath the inner mouth of open channels results in the inactivation of only these channels. By contrast, in 'shell' models, slow filling of a continuous compartment under the membrane (a shell) results in the inactivation of all membrane Ca2+ channels. Experimental evidence for both models has been found^{22,25,35,73}. In particular, in hippocampal CA1 pyramidal neurons and smooth muscle cells, CDI is preserved in the presence of intracellular BAPTA, indicating a domain model with Ca²⁺ binding at or closely associated with the channel^{22,73}. Binding of a single Ca²⁺ ion to an open channel might indeed induce CDI72. This suggestion is supported by the fact that the CDI of Ca_v1.2 channels is an intrinsic property of the α 1-subunit⁷⁴, and by the existence of a Ca²⁺-induced shift of L-type Ca²⁺ channel gating to a mode of low open probability, leaving the direct binding of Ca²⁺ to the channel as a likely chemical initiation event of inactivation75.

Despite these findings, the nature of the Ca2+ sensor of Ca²⁺ channels has only recently been uncovered. In 1995, it was shown that crucial determinants of CDI are located in the proximal third of the carboxyl terminus of the $Ca_v 1.2$ channel⁷⁶. Replacing this region of $Ca_v 1.2$ with the homologous region of the non-inactivating Ca_v2.3 channel abolished CDI, whereas transfer of the $Ca_v 1.2$ region to the $Ca_v 2.3$ backbone resulted in CDI. So, this region was termed the Ca²⁺-inactivation (CI) region (see FIG. 5). This short stretch contains a consensus Ca2+-binding motif (an EF hand), and it was proposed that this motif is the Ca²⁺ sensor for CDI. However, it was found that substitution of only the distal two-thirds of the Ca_v1.2 carboxyl terminus, which do not contain the EF hand, into Cav2.3 was sufficient to produce CDI⁷⁷. Experiments in which systematic deletions were made in the Ca_v1.2 carboxyl terminus identified two groups of amino acids that were essential

Figure 4 | Model of CDI induction by CaM in Ca_v1.2 Ca²⁺ channels. Ca²⁺-dependent inactivation (CDI) depends on the interaction of calmodulin (CaM) with the Ca²⁺ channel. The left panel shows domain IV and the proximal part of the carboxyl terminus of the Ca_v1.2 protein. The relative positions of the EF hands (orange boxes) and the IQ motif (purple ellipse) are indicated. The EF hands of CaM are indicated as white circles. Their occupation by Ca²⁺ is indicated by red circles. The amino-terminal lobe of CaM masks the 1-8-14 motif. At resting Ca²⁺ levels (left panel), the amino-terminal lobe of CaM is tethered to the 1-8-14-binding motif, whereas both the amino- and the carboxy-terminal lobes are tethered to the CB region (turquoise). Following the influx of Ca²⁺ (right panel), the Ca²⁺-binding sites of the carboxy-terminal lobe of CaM become occupied, and the carboxy-terminal lobe binds the IQ motif. Subsequently, processes that lead to channel closure are induced. In this model, the IQ motif is not thought to contribute to CaM tethering at low Ca²⁺ concentrations. P, P-loop.

WHOLE-CELL PATCH-CLAMP RECORDING A high-resolution electrophysiological recording technique in which a very small electrode tip is sealed onto a patch of cell membrane and, with suction, the membrane patch is ruptured to allow lowresistance electrical access to the cell interior. Electrical currents flowing across the cell membrane can then be recorded, although the ion composition of the cell interior is altered to that of the electrodefilling solution.

DOMINANT NEGATIVE Describes a mutant molecule that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET). A spectroscopic technique that is based on the transfer of energy from the excited state of a donor moiety to an acceptor. The transfer efficiency depends on the distance between the donor and the acceptor. FRET is often used to estimate distances between macromolecular sites in the 20–100-Å range, or to study interactions between macromolecules *in vivo*.

CB DOMAIN

A carboxy-terminal 26-aminoacid sequence found in L-type Ca²⁺ channels that binds calmodulin at low concentrations of intracellular Ca²⁺.

1-8-14 MOTIF

A consensus calmodulinbinding motif that is found, for example, in calcineurin (type A) and fodrin (type B). for CDI. These were located 61 and 103 residues carboxy-terminal of the EF hand, respectively⁷⁸. The second region resembles the consensus pattern for an IQ-type CaM-binding motif ⁷⁹, raising the possibility that CaM is involved in CDI. Indeed, in 1999, several groups showed that CaM is the dominant Ca²⁺ sensor for CDI in Ca_v1.2 and Ca_v2.1 channels in heterologous expression systems^{6–9}. Furthermore, rather than serving as a Ca²⁺ sensor for CDI, the EF-hand region might be essential for the transduction of Ca²⁺/CaM binding into inactivation⁸⁰.

In conclusion, it is evident that the carboxy-terminal region of VGCCs is of fundamental importance for CDI. Ca²⁺ could bind to the EF-hand motif or to other Ca²⁺-binding sites of the protein that are, so far, unrecognized. However, it has been suggested that the EF hand contributes to CDI by transducing signals from Ca²⁺/CaM-binding domains rather than from direct Ca²⁺ binding⁸¹.

Ca²⁺/CaM-dependent inactivation and facilitation. Ca²⁺ and CaM can both inactivate and facilitate the operation of VGCCs. In contrast to inactivation, facilitation is a subsequent increase in current amplitude after the first channel opening. Experiments in HEK293 (human embryonic kidney) cells using mutant CaM with a selective impairment of Ca²⁺ binding in either the amino- (CaM₁₂) or the carboxy-terminal (CaM₂₄) lobes, each of which harbours two EF hands (BOX 3), revealed lobe-specific effects on CDI7. Whereas the expression of mutant CaM12 does not affect the CDI of Cav1.2 channels, CaM₃₄ abolishes it. Moreover, the binding of CaM to $Ca_v 1.2$ channels and the modulation of this binding by Ca²⁺ seem to be highly complex, and differing results of pre-association between CaM and VGCCs have been reported. Ca²⁺-insensitive forms of CaM (CaM₁₉₃₄) exert a DOMINANT NEGATIVE effect on endogenous CaM, thereby preventing CDI7. On the basis of this observation, it was concluded that Ca2+-free CaM is tethered to the channel

protein. Indeed, Ca2+-independent pre-association of CaM with Ca_v1.2, Ca_v2.1 and, surprisingly, Ca_v2.3 channels could be revealed using FLUORESCENCE RESONANCE ENERGY TRANSFER⁸². So, it seems that the pre-association of CaM with VGCCs is coordinated by several segments of the carboxy-terminal region and requires resting concentrations of Ca2+. Short amino-acid segments that are located amino-terminal of the IQ domain have been found to interact with CaM in cardiac myocytes and heterologous expression systems at low levels of Ca²⁺ (less than 100 nM) — levels that approximate to those of resting neurons⁸³⁻⁸⁵. One of these regions — the 26-amino-acid CB DOMAIN — is located 20 amino acids amino-terminal of the IQ motif⁸⁵ (FIG. 4). The CB sequence contains the amino acids that have previously been shown to be necessary for CDI^{78,86}. Surprisingly, in protein-protein-interaction studies, a fragment of the carboxyl terminus of the $Ca_v 1.2$ channel that includes the IQ domain (and the CB sequence) binds CaM even when the IQ key sequence has been changed completely to alanines⁸. It was later found that CB binds CaM, although with a lower affinity than the IQ motif⁸⁵. However, although IQ peptides from high-voltage activated (HVA) Ca2+ channels bind to CaM, only the CB peptide from Ca_v1.2 binds to CaM at low Ca²⁺ concentrations. A further region upstream of CB that conforms to a 1-8-14-TYPEA CALMODULIN-BINDING MOTIF⁷⁹ can bind CaM and even CaM_{1234} (REF. 83). A model of the CDI of Ca_v1.2 channels that is based on CaM switching between binding sites (FIG. 4) could account for several findings in the literature⁸³. At rest, with low intracellular Ca²⁺ levels (~50 nM), the 1-8-14 binding region constitutively anchors the amino-terminal lobe of CaM, whereas the CB domain is probably associated with both the amino- and the carboxy-terminal lobes of the same CaM. When the channel opens, Ca2+ reaches CaM and binds to the carboxy-terminal lobe. The Ca2+-bound carboxy-terminal lobe then binds to the IQ domain and effects inactivation.

The neuronal Ca_v2.1 channel also shows CDI, although its magnitude is smaller than that of Ca_v1.2 channels (FIG. 2; TABLE 1). In addition, these channels can show Ca2+-dependent facilitation (CDF). Like Ca_v1.2 channels, Ca_v2.1 channels have more than one CaM-binding site (FIG. 5). One is an IQ-like motif, whereas a second sequence does not fall into the known categories of CaM-binding domains, but strongly resembles a region of the Ca2+/CaM-stimulated adenylyl cyclase type 8 (REF. 79). The latter region (termed CBD; FIG. 5) is necessary for CDI as well as for CDF, because both processes are removed on deletion of this sequence^{6,37}. Interestingly, when Ca_v2.1 channels are examined using intermediate Ca²⁺-buffering strength, inactivation is lost whereas facilitation remains. Moreover, CaM₁₂₃₄ is dominant negative when coexpressed with Ca_v^{1234} 2.1, leading to the loss of CDI and CDF⁸⁷. CaM₁₂ and CaM₃₄ have completely selective effects: CaM₁₂ eliminates CDI, whereas CaM₃₄ eliminates CDF. It was recently shown that both CDI and CDF of Ca_v1.2 channels can be abolished by mutating five key amino acids in the IQ domain⁸⁸.

Although the effect of CaM_{12} on the CDI of $Ca_V 2.1$ seems at odds with that on $Ca_V 1.2$, these findings indicate that the two lobes can somehow bifurcate the same

Figure 5 | Model of CDI and CDF induction by CaM in Ca_v2.1 Ca²⁺ channels. Calmodulin (CaM) contributes to Ca²⁺-dependent inactivation (CDI) and facilitation (CDF). The Ca_v2.1 channel protein and its carboxyl terminus are illustrated schematically. The relative positions of the EF hands (orange boxes) and the IQ motif (purple ellipse) are shown. Ca_v2.1 channels contain a second CaM-binding domain (CBD; pink) that resembles a region of Ca²⁺/CaM-stimulated adenylyl cyclase type 8. As the exact role of the CBD is not understood, it is only shown for the resting state. CaM is pre-associated with the resting channel at a site that provides preferential access to the IQ region. Following the influx of Ca²⁺, Ca²⁺ binding to the carboxy-terminal lobe of CaM allows its interaction with the IQ site, and induces CDF of the channel. Ca²⁺ binding to the amino-terminal lobe might respond preferentially to the fast local changes in Ca²⁺ concentration that are attributable to local Ca²⁺ channel activity. The amino-terminal lobe might detect slower changes in Ca²⁺ concentration that are attributable to cellular Ca²⁺ signalling processes. CI region, Ca²⁺-inactivation region. Adapted, with permission, from **REF. 87** © 2001 Macmillan Magazines Ltd.

local Ca²⁺ signal, offering custom-made mechanisms for the initiation of separate functional tasks. Furthermore, it becomes obvious from the bifurcation model that channel-bound CaM has different actions when CaM is differentially loaded with Ca²⁺.

Most electrophysiological data on VGCC–CaM interactions have been obtained from heterologous expression systems. However, owing to the widespread distribution of VGCCs in the brain and the high structural homology of L-type Ca²⁺ channel isoforms, it is likely that CaM acts as the voltage sensor for CDI in mammalian neurons. In this respect, it is interesting to note that Ca_v1.2 channels have recently been found to form large protein complexes that might be relevant to CDI by adding to a CDI-related protein assembly. It has been shown that the β_2 -adrenoceptor is directly associated with one of its effectors, the Ca_v1.2 channel (FIG. 3). This protein complex also contained the whole signalling cascade, including G proteins, adenylyl cyclase, PKA and the counteracting PP2A⁸⁹.

This signalling complex, in close association with other components, such as CaM, calcineurin and the cytoskeleton, might constitute a large functional multicomponent protein assembly that is relevant for CDI in neurons.

The functional significance of CDI

Ca²⁺ entry through presynaptic VGCCs links membrane depolarization to the exocytosis of synaptic vesicles at the nerve terminal. The amount of neurotransmitter or neuropeptide that is released is steeply dependent on presynaptic Ca²⁺ concentrations, such that increases or decreases in Ca²⁺ influx can powerfully alter neurotransmission and hormone release⁹⁰. At many central and peripheral synapses, P/Q-type Ca²⁺ channels mediate transmission². Ca²⁺ channel inactivation in neurohypophysial nerve terminals varies significantly, depending on stimulation frequency and duration⁵⁵. Inactivation increases with the frequency of train pulses (which mimic physiological bursts of action potentials), and intracellular BAPTA abolishes this frequency dependency. As vasopressin and oxytocin have optimal stimulation frequencies for being released, CDI might contribute to the integration of different aspects of complex electrical stimuli — including burst frequency, duration and interburst interval - to determine the amount of hormone release. Furthermore, recent evidence indicates that the CDI and CDF of P/Q-type Ca²⁺ channels in synaptic transmission could contribute to activity-dependent synaptic plasticity³⁷. In this way, a combination of the effects of voltage and Ca²⁺ on Ca²⁺ channel inactivation could be associated with the regulation of neurotransmitter and neuropeptide release. However, the particular relevance of CDI to neurotransmission is far from understood. In particular, it is not known to what extent the molecular machinery that underlies CDI is present in presynaptic compartments.

Patients who suffer from chronic temporal lobe epilepsy with Ammon's horn sclerosis, the predominant form of epilepsy in adults, offer a glimpse of the potential

Figure 6 | Schematic overview of the main mechanisms leading to and influencing CDI in central neurons. Ca^{2+} -dependent inactivation (CDI) can be caused by direct interactions between Ca^{2+} entering through the pore and the multimeric channel complex — Ca^{2+} binding to the channel's EF hand and/or to calmodulin (CaM). It can also be caused by the activation of Ca^{2+} -dependent protein phosphatases (PPs) such as calcineurin (PP2B), and by a Ca^{2+} -dependent disruption of the interaction between the channel and the cytoskeleton. Ca^{2+} might indirectly activate protein phosphatases such as PP1, whereas other phosphatases, such as PP2A, might modulate CDI in a Ca^{2+} -independent way. Ca^{2+} -dependent activation of proteases such as calpain is also involved in Ca^{2+} channel loss by proteolysis²⁴. High-affinity Ca^{2+} -binding proteins (CBP) disrupt CDI by rapidly sequestering Ca^{2+} that is necessary for CDI in the immediate vicinity of the Ca^{2+} channel. A specific cell type might combine the various mechanisms based on the temporal and spatial characteristics of Ca^{2+} transients in relation to the Ca^{2+} sensitivity of the various CDI mechanisms. Green and red arrows indicate activation and inhibition, respectively. CaMK, Ca^{2+}/CaM -dependent protein kinase; CI, calcium-inactivation domain.

clinical relevance of CDI. This condition is associated with a loss of calbindin- D_{28k} (BOX 3) in the affected areas⁹¹. In agreement with this finding, CDI in surviving hippocampal granule cells that were obtained after neurosurgery revealed markedly increased CDI, thereby diminishing Ca²⁺ influx during repetitive neuronal firing^{16,63,92}. These findings point to a neuroprotective role of CDI that is based on a decrease in Ca²⁺ entry.

A unifying model and future work

We have pointed to several mechanisms that underlie the CDI of VGCCs in neurons: direct binding of Ca2+ to the VGCC-CaM complex, Ca2+-mediated dephosphorylation of the channel protein, and Ca2+-dependent disruption of the connection between the channel and the cytoskeleton. Although there is evidence in favour of each of these mechanisms, it is difficult to pinpoint the most important one. Furthermore, it is unlikely that these mechanisms are exclusive. Instead, the various mechanisms might operate in a complementary fashion within the same cell (FIG. 6). The speed, amplitude and spatiotemporal patterning of Ca2+ signals in combination with the individual Ca2+ sensitivity of Ca2+ sensors is likely to result in differential and/or combinatorial activation of the various CDI mechanisms, leading to a cell-type-specific CDI profile. This view of custommade CDI in different cell types is consistent with the

observation that even one component — CaM — is used differentially in the CDI of Ca_v1.2 and Ca_v2.1 channels. Furthermore, the CDI and CDF of Ca_v2.1 channels have different Ca2+ dependencies, which might reflect differences in Ca²⁺ binding to the aminoand carboxy-terminal lobes of CaM³⁷. Ca²⁺ binding to CaM is highly cooperative with Ca²⁺ binding, first to the carboxy-terminal EF hands, which have the highest Ca²⁺ affinity, and subsequently to the loweraffinity sites in the amino-terminal lobes. The degree of Ca²⁺ binding to these sites, and so the activation of CDI and/or CDF, depends on the cell-type-specific speed, amplitude and spatiotemporal patterning of Ca²⁺ signals after Ca2+ entry through VGCCs. A similar consideration might apply to the activation of other CDI mechanisms.

The main challenge for future work will be to determine the molecular nature of the transduction mechanism that couples Ca²⁺ binding to channel closure, and to localize protein assemblies that are relevant for CDI in specific functional cellular compartments. The following recent observations could stimulate future work in this direction.

First, the CDI of $Ca_v 1.2$ and the VDI of $Ca_v 2.1$ channels are influenced similarly by β -subunits. This indicates that the same subunit interactions influence both types of inactivation⁹³. It will be interesting to learn whether these channels use a K⁺-channel-like 'ball and chain' mechanism (BOX 2), with blocking particles and binding sites encoded by homologous sequences on the $Ca_v 1.2$ and $Ca_v 2.1$ $\alpha 1$ -subunits, making these elements sensitive to the same molecular interactions with the β -subunit.

Second, CaM binds to both intracellular ends of Ca_v1.2 channels. This observation has led to the suggestion of a molecular inhibitory scaffold formed by the amino- and carboxy-terminal regions of these channels, which allows its regulation by the $\beta\gamma$ -subunits of G proteins and by CaM⁹⁴. This adds to the complexity of VGCC–CaM interactions, and future studies might elucidate the three-dimensional structure of this scaffold.

Third, apart from CaM, Ca²⁺/CaM-dependent protein kinase II (CaMKII) is involved in the Ca²⁺dependent regulation of L-type Ca²⁺ channels⁹⁵. It was recently shown that both CaMKII and an IQ-mimetic peptide facilitate L-type Ca²⁺ currents by favouring prolonged channel openings⁹⁶. Future studies should aim to characterize the common pathway leading to channel facilitation that is used by CaM binding to the IQ domain of Ca²⁺ channels and to CaMKII; more generally, the role of CaMKII in CDI and CDF in neurons should be investigated.

The widespread pre-association of CaM with different VGCC subtypes could motivate a renewed search for Ca²⁺-dependent modulation of gating of other members of the Ca_v2 family. In addition, as CDI is induced by CICR in cardiac cells, and CICR is a widespread phenomenon in neurons, further research in this area might reveal the involvement of intracellular Ca²⁺ release in CDI in neurons.

- Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility 1 and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 1. 11-21 (2000).
- An excellent paper that provides a review of all aspects of cellular Ca²⁺ signalling. Catterall, W. A. Structure and function of neuronal Ca²⁺ 2.
- channels and their role in neurotransmitter release. *Cell Calcium* **24**, 307–323 (1998).
- Choi, D. W. Calcium and excitotoxic neuronal injury. Ann. NY Acad. Sci. **747**, 162–171 (1994). Brehm, P. & Eckert, R. Calcium entry leads to inactivation of
- calcium channel in Paramecium. Science 202, 1203-1206 (1978)
- Tillotson, D. Inactivation of Ca conductance dependent on entry of Calions in molluscan neurons. Proc. Natl Acad. Sci USA 76, 1497-1500 (1979). References 4 and 5 are pioneering descriptions of CDI in *Paramecium* and molluscan neurons, and have directed the study of Ca²⁺ channels towards the analysis of localized Ca²⁺ signalling. Lee, A. *et al.* Ca²⁺/calmodulin binds to and modulates
- P/Q-type calcium channels. *Nature* **399**, 155–159 (1999). Peterson, B. Z., DeMaria, C. D., Adelman, J. P. & Yue, D. T. 7 Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22
- 549–558 (1999). Qin, N., Olcese, R., Bransby, M., Lin, T. & Birnbaumer, L. 8. Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc. Natl Acad. Sci. USA 96, 2435-2438 (1999)
- Zühlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and 9 facilitation of L-type calcium channels. Nature 399, 159–162 (1000)

References 6–9 show for the first time that CaM is essential for the inactivation of L- and P/Q-type Ca²⁺ channels.

- Hering, S. et al. Molecular determinants of inactivation in 10 voltage-gated Ca2+ channels. J. Physiol. (Lond.) 528, 237–249 (2000).
- Stotz, S. C. & Zamponi, G. W. Structural determinants of fast inactivation of high voltage-activated Ca²⁺ channels. 11.
- Trends Neurosci. 24, 176–181 (2001). Eckert, R. & Tillotson, D. L. Calcium-mediated inactivation of 12. the calcium conductance in caesium-loaded giant neurones of Aplysia californica. J. Physiol. (Lond.) 314, 265-280 (1981).
- Deitmer, J. W. Evidence for two voltage-dependent calcium currents in the membrane of the ciliate *Stylonychia*. 13 *J. Physiol. (Lond.)* **355**, 137–159 (1984). McDonald, T. F., Pelzer, S., Trautwein, W. & Pelzer, D. J.
- 14. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev. 74, 365-507 (1994).
- Gera, S. & Byerly, L. Measurement of calcium channel 15. inactivation is dependent upon the test pulse potential Biophys. J. 76, 3076–3088 (1999).
- Nägerl, U. V. & Mody, I. Calcium-dependent inactivation of high-threshold calcium currents in human dentate gyrus 16.
- granule cells. *J. Physiol. (Lond.)* **509**, 39–45 (1998). Patil, P. G., Brody, D. L. & Yue, D. T. Preferential closed-state 17. nactivation of neuronal calcium channels. Neuron 20, 1027-1038 (1998).
- Jones, S. W. & Marks, T. N. Calcium currents in bullfrog 18 sympathetic neurons. II. Inactivation. J. Gen. Physiol. 94, 169–182 (1989).
- Jones, L. P., DeMaria, C. D. & Yue, D. T. N-type calcium 19 channel inactivation probed by gating-current analysis. *Biophys. J.* **76**, 2530–2552 (1999).
- Gera, S. & Byerly, L. Voltage- and calcium-dependent inactivation of calcium channels in *Lymnaea* neurons. 20.
- J. Gen. Physiol. 114, 535–550 (1999). Ferreira, G., Yi, J., Rios, E. & Shirokov, R. Ion-dependent 21. inactivation of barium current through L-type calcium channels. J. Gen. Physiol. 109, 449–461 (1997).
- Kay, A. R. Inactivation kinetics of calcium currents of acutely 22. dissociated CA1 pyramidal cells of the mature guinea-pig hippocampus. J. Physiol. (Lond.) **437**, 27–48 (1991). This monograph provides a comprehensive analysis of native Ca²⁺ current inactivation in central neurons, and points to the importance of local Ca2+ domains for CDI.
- 23. Gutnick, M. J., Lux, H. D., Swandulla, D. & Zucker, H Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones. J. Physiol. (Lond.) 412, 197–220 (1989).
- 24. Chad, J. E. & Eckert, R. An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones J. Physiol. (Lond.) 378, 31-51 (1986). This pioneering work provided the first mechanistic explanation for CDI in neurons

- Imredy, J. P. & Yue, D. T. Submicroscopic Ca2+ diffusion 25 mediates inhibitory coupling between individual Ca² channels. *Neuron* **9**, 197–207 (1992). This paper shows that Ca²⁺ currents are controlled not only by intrinsic channel properties, but also by local
- diffusive interactions between neighbouring channels Johnson, B. D. & Byerly, L. A cytoskeletal mechanism for Ca2+ channel metabolic dependence and inactivation by
- intracellular Ca²⁺. Neuron **10**, 797–804 (1993). Johnson, B. D. & Byerly, L. Ca²⁺ channel Ca²⁺-dependent inactivation in a mammalian central neuron involves the 27 cytoskeleton. *Pflugers Arch.* **429**, 14–21 (1994). References 26 and 27 introduced the cytoskeleton as
- a mediator of CDI in molluscan and mammaliar neurons. Naraghi, M. & Neher, E. Linearized buffered Ca²⁺ diffusion in 28
- microdomains and its implications for calculation of $[Ca^{2*}]$ at the mouth of a calcium channel. *J. Neurosci.* **17**, 6961-6973 (1997).

This theoretical paper describes the development of standing Ca²⁺ gradients within hundreds of microseconds and a few hundred nanometres after Ca²⁺ channel opening. In addition, it shows that every Ca2+ buffer can be assigned a uniquely defined length constant as a measure of its ability to buffer calcium close to the channel.

- Yue, D. T., Backx, P. H. & Imredy, J. P. Calcium-sensitive inactivation in the gating of single calcium channels. *Science* 29 250, 1735–1738 (1990). Kalman, D., O'Lague, P. H., Erxleben, C. & Armstrong, D. L.
- 30 Calcium-dependent inactivation of the dihydropyridin sensitive calcium channels in GH3 cells. J. Gen. Physiol. 92 531-548 (1988)
- Lacerda, A. E. et al. Normalization of current kinetics by 31 interaction between the $\alpha 1$ and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352, 527-530 (1991).
- Varadi, G., Lory, P., Schultz, D., Varadi, M. & Schwartz, A Acceleration of activation and inactivation by the B subunit of the skeletal muscle calcium channel. Nature 352, 159-162 (1991)
- Hell, J. W. et al. Identification and differential subcellular 33. localization of the neuronal class C and class D L-type calcium channel α 1 subunits. J. Cell Biol. **123**, 949–962 (1993)
- Hell, J. W., Westenbroek, R. E., Elliott, E. M. & Catterall, W. A. Differential phosphorylation, localization, and function of 34. distinct α 1 subunits of neuronal calcium channels. Two size forms for class B. C. and D α1 subunits with different
- COOH-termini. Ann. NY Acad. Sci. 747, 282–293 (1994). Meuth, S., Budde, T. & Pape, H.-C. Differential control of high-voltage activated Ca²⁺ current components by a Ca²⁺ 35 dependent inactivation mechanism in thalamic relay neurons. *Thalamus Relat. Syst.* **1**, 31–38 (2001). Zeilhofer, H. U., Blank, N. M., Neuhuber, W. L. & Swandulla, D.
- Calcium-dependent inactivation of neuronal calcium channel currents is independent of calcineurin. Neuroscience 95, 235-241 (2000)
- Lee, A., Scheuer, T. & Catterall, W. A. Ca2+/calmodulin-37 dependent facilitation and inactivation of P/Q-type Ca²⁺ channels. *J. Neurosci.* **20**, 6830–6838 (2000). This paper points to the possible functional significance of CDI and CDF in presynaptic
- neurotransmitter release. Lukyanetz, E. A., Piper, T. P. & Sihra, T. S. Calcineurin involvement in the regulation of high-threshold $Ca^{2\scriptscriptstyle+}$ 38 channels in NG108-15 (rodent neuroblastoma × glioma hybrid) cells. J. Physiol. (Lond.) 510, 371–385 (1998).
- Cox, D. H. & Dunlap, K. Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence. J. Gen. Physiol. 104, 311–336 (1994).
- Shirokov, R. Interaction between permeant ions and voltage sensor during inactivation of N-type Ca²⁺ channels. 40 J. Physiol. (Lond.) 518, 697–703 (1999).
- Sham, J. S., Cleemann, L. & Morad, M. Functional coupling 41 of Ca²⁺ channels and ryanodine receptors in cardiac
- myocytes. *Proc. Natl Acad. Sci. USA* **92**, 121–125 (1995). Fabiato, A. Calcium-induced release of calcium from the 42 cardiac sarcoplasmic reticulum. Am. J. Physiol. 245, C1-C14 (1983).
- Sun, H., Leblanc, N. & Nattel, S. Mechanisms of inactivation 43 of L-type calcium channels in human atrial myocytes. Am. J. *Physiol.* **272**, H1625–H1635 (1997).
- Chavis, P., Fagni, L., Lansman, J. B. & Bockaert, J. Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382, 719–722 (1996). 45. Berridge, M. J. Neuronal calcium signaling. Neuron 21,
- 13–26 (1998) 46
- Armstrong, D. L. Calcium channel regulation by calcineurin, a Ca2+-activated phosphatase in mammalian brain. Trends Neurosci. 12, 117-122 (1989).

- Hell, J. W. et al. Differential phosphorylation of two size 47 forms of the neuronal class C L-type calcium channel α 1 subunit. *J. Biol. Chem.* **268**, 19451–19457 (1993).
- Hell, J. W. et al. N-methyl-p-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. *Proc. Natl Acad.*
- Sci. USA 93, 3362–3367 (1996). Rubin, C. S. A kinase anchor proteins and the intracellular 49 targeting of signals carried by cyclic AMP. Biochim. Biophys. Acta 1224, 467–479 (1994).
- Davare, M. A., Dong, F., Rubin, C. S. & Hell, J. W. The 50. A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J. Biol. Chem. 274, 30280–30287 (1999)
- Diviani, D. & Scott, J. D. AKAP signaling complexes at the 51. cytoskeleton. J. Cell Sci. 114, 1431–1437 (2001). Theurkauf, W. E. & Vallee, R. B. Molecular characterization
- 52 of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J. Biol. Chem. 257 3284–3290 (1982).
- Meuth, S., Pape, H.-C. & Budde, T. Modulation of Ca²⁺ 53 currents in rat thalamocortical relay neurons by activity and
- phosphorylation. *Eur. J. Neurosci.* **15**, 1603–1614 (2002). Lukyanetz, E. A. Evidence for colocalization of calcineurin 54 and calcium channels in dorsal root ganglion neurons *Neuroscience* **78**, 625–628 (1997).
- Branchaw, J. L., Banks, M. I. & Jackson, M. B. Ca2+- and 55 voltage-dependent inactivation of Ca2+ channels in nerve terminals of the neurohypophysis. J. Neurosci. 17,
- 5772–5781 (1997). Victor, R. G., Rusnak, F., Sikkink, R., Marban, E. & 56 O'Rourke, B. Mechanism Ca²⁺ dependent inactivation of L-type Ca²⁺ channels in GH3 cells: direct evidence against dephosphorylation by calcineurin. *J. Membr. Biol.* **156**, 53-61 (1997)
- Burley, J. R. & Sihra, T. S. A modulatory role for protein 57 phosphatase 2B (calcineurin) in the regulation of Ca²⁺ entry. *Eur. J. Neurosci.* **12**, 2881–2891 (2000).
- Herzig, S. & Neumann, J. Effects of serine/threonine protein 58 phosphatases on ion channels in excitable membranes Physiol. Rev. 80, 173–210 (2000).
- Firjsour, Rev. 30, 173–210 (2000).
 Sculptoreanu, A., Rotman, E., Takahashi, M., Scheuer, T. & Catterall, W. A. Voltage-dependent potentiation of the activity of cardiac L-type calcium channel α1 subunits due to phosphorylation by cAMP-dependent protein kinase. *Proc. Natl Acad. Sci. USA* 90, 10135–10139 (1993). 59
- Hartzell, H. C., Hirayama, Y. & Petit-Jacques, J. Effects of protein phosphatase and kinase inhibitors on the cardiac 60. L-type Ca current suggest two sites are phosphorylated by protein kinase A and another protein kinase. J. Gen. Physiol. 106, 393–414 (1995).
 Ono, K. & Fozzard, H. A. Two phosphatase sites on the Ca²⁴
- 61 channel affecting different kinetic functions. J. Physiol.
- (Lond.) **470**, 73–84 (1993). Davare, M. A., Horne, M. C. & Hell, J. W. Protein 62 phosphatase 2A is associated with class C L-type calcium channels (Ca. 1.2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J. Biol. Chem. 275, 39710–39717 (2000). Beck, H., Steffens, R., Heinemann, U. & Elger, C. E. Ca²⁺-
- 63 dependent inactivation of high-threshold $\tilde{\mathrm{Ca}}^{2*}$ currents in hippocampal granule cells of patients with chronic temporal
- Ibbe epilepsy. J. Neurophysiol. 82, 946–954 (1999).Bennett, J. & Weeds, A. Calcium and the cytoskeleton.Br. Med. Bull. 42, 385–390 (1986). 64 65
- Hanlon, M. R., Berrow, N. S., Dolphin, A. C. & Wallace, B. A. Modelling of a voltage-dependent Ca^2+ channel β subunit as a basis for understanding its functional properties. *FEBS Lett.* **445**, 366–370 (1999).
- Sheng, M. & Wyszynski, M. Ion channel targeting in 66. neurons. *Bioessays* **19**, 847–853 (1997). Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in
- 67 synapse assembly and signalling. Trends Cell Biol. 10, 274-280 (2000).
- Rosenmund, C. & Westbrook, G. L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron **10**, 805–814 (1993).
- Bickler, P. E. & Buck, L. T. Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca²⁺ concentrations. *J. Exp. Biol.* **201**, 1141–1152 (1998). Sherman, A., Keizer, J. & Rinzel, J. Domain model for Ca²⁺-69
- 70. inactivation of Ca2+ channels at low channel density.
- Biophys. J. 58, 985–995 (1990). Standen, N. B. & Stanfield, P. R. A binding-site model for 71 calcium channel inactivation that depends on calcium entry. *Proc. R. Soc. Lond. B* 217, 101–110 (1982).
- Chad, J. E. & Eckert, R. Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses. *Biophys. J.* 45, 993-999 (1984).

- Giannattasio, B., Jones, S. W. & Scarpa, A. Calcium currents in the A7r5 smooth muscle-derived cell line. Calcium-dependent and voltage-dependent inactivation. *J. Gen. Physiol.* 98, 987–1003 (1991).
- Zong, X. & Hofmann, F. Ca²⁺-dependent inactivation of the class C L-type Ca²⁺ channel is a property of the α1 subunit. *FEBS Lett.* 378, 121–125 (1996).
- Imredy, J. P. & Yue, D. T. Mechanism of Ca²⁺-sensitive inactivation of L-type Ca²⁺ channels. *Neuron* 12, 1301–1318 (1994).
- de Leon, M. *et al.* Essential Ca²⁺-binding motif for Ca²⁺sensitive inactivation of L-type Ca²⁺ channels. *Science* 270, 1502–1506 (1995).
 This paper provided the first indication of the

importance of the carboxy-terminal region of L-type Ca²⁺ channels for CDI. Zhou, J. *et al.* Feedback inhibition of Ca²⁺ channels by Ca²

- Zhou, J. *et al.* Feedback inhibition of Ca²⁺ channels by Ca²⁺ depends on a short sequence of the C terminus that does not include the Ca²⁺-binding function of a motif with similarity to Ca²⁺-binding domains. *Proc. Natl Acad. Sci. USA* 94, 2301–2305 (1997).
- Zühlke, R. D. & Reuter, H. Ca²⁺-sensitive inactivation of L-type Ca²⁺ channels depends on multiple cytoplasmic amino acid sequences of the α1C subunit. *Proc. Natl Acad Sci. USA* 95, 3287–3294 (1998).
 Rhoads, A. R. & Friedberg, F. Sequence motifs for
- Rhoads, A. R. & Friedberg, F. Sequence motifs for calmodulin recognition. *FASEB J.* **11**, 331–340 (1997).
 Peterson, B. Z. *et al.* Critical determinants of Ca²⁺-
- Peterson, B. Z. *et al.* Critical determinants of Ca²⁺dependent inactivation within an EF-hand motif of L-type Ca²⁺ channels. *Biophys. J.* **78**, 1906–1920 (2000).
 Anderson, M. E. Ca²⁺-dependent regulation of cardiac
- Anderson, M. E. Ca²⁺-dependent regulation of cardiac L-type Ca²⁺ channels: is a unifying mechanism at hand? *J. Mol. Cell. Cardiol.* 33, 639–650 (2001).
- Erickson, M. G., Alseikhan, B. A., Peterson, B. Z. & Yue, D. T. Preassociation of calmodulin with voltage-gated Ca²⁺ channels revealed by FRET in single living cells. *Neuron* 31, 973–985 (2001).
 By use of a modified FRET technique, the authors

showed the constitutive association of CaM with several types of Ca²⁺ channel. 3. Pitt, G. S. *et al.* Molecular basis of calmodulin tethering and Ca²⁺ channels.

- Ca²⁺-dependent inactivation of L-type Ca²⁺ channels. J. Biol. Chem. **276**, 30794–30802 (2001). The authors present a model in which CaM is tethered at two sites to L-type Ca²⁺ channels and signals actively to slow inactivation. When the carboxy-terminal lobe of CaM binds to the nearby CaM-effector sequence (the IQ motif), the braking effect is relieved and CDI is accelerated.
- Romanin, C. *et al.* Ca²⁺ sensors of L-type Ca²⁺ channel. *FEBS Lett.* **487**, 301–306 (2000).
- Pate, P. *et al.* Determinants for calmodulin binding on voltage-dependent Ca²⁺ channels. *J. Biol. Chem.* 275, 39786–39792 (2000).

- Soldatov, N. M., Oz, M., O'Brien, K. A., Abernethy, D. R. & Morad, M. Molecular determinants of L-type Ca²⁺ channel inactivation. Segment exchange analysis of the carboxylterminal cytoplasmic motif encoded by exons 40–42 of the human α1C subunit gene. J. Biol. Chem. 273, 957–963 (1998).
- DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S. & Yue, D. T. Calmodulin bifurcates the local Ca²⁺ signal that modulates P/Q-type Ca²⁺ channels. *Nature* **411**, 484–489 (2001).

The surprising finding of this study is that the two competing processes of CDI and CDF both require Ca²/CaM binding to a single IQ-like domain on the carboxyl tail of the Ca₂2.1 Ca²⁺ channel. The bifunctional capability of CaM arises from the bifurcation of Ca²⁺ signalling by the lobes of CaM.

- Zühlke, R. D., Pitt, G. S., Tsien, R. W. & Reuter, H. Ca²⁺sensitive inactivation and facilitation of L-type Ca²⁺ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the α1C subunit. *J. Biol. Chem.* 275, 21121–21129 (2000).
- Davare, M. A. *et al.* A β2 adrenergic receptor signaling complex assembled with the Ca²⁺ channel Ca_y1.2. *Science* 293, 98–101 (2001).
 This paper impressively shows the existence of large
- multi-protein signalling complexes in mammalian central neurons, which provide highly localized, specific and rapid signalling by G-protein-coupled receptors.
- Hille, B. *Ionic Channels of Excitable Membranes* (Sinauer Associates, Sunderland, Massachusetts, 2001).
- Baimbridge, K. G. & Miller, J. J. Hippocampal calciumbinding protein during commissural kindling-induced epileptogenesis: progressive decline and effects of anticonvulsants. *Brain Res.* 324, 85–90 (1984).
- Nägerl, U. V. *et al.* Surviving granule cells of the sclerotic human hippocampus have reduced Ca²⁺ influx because of a loss of calbindin-D₂₈. In temporal lobe epilepsy. *J. Neurosci.* 20, 1831–1836 (2000).
 This paper points to the possible neuroprotective role of CDI in temporal lobe epilepsy, and highlights the

of CDI in temporal lobe epilepsy, and highlights the ability of exogenous calbindin-D_{28k} to disrupt the CDI mechanism in hippocampal neurons.

- Cens, T., Restituito, S., Galas, S. & Charnet, P. Voltage and calcium use the same molecular determinants to inactivate calcium channels. *J. Biol. Chem.* 274, 5483–5490 (1999).
 Vaoina T. Riumenstein Y. Shistik F. Barzilai R. &
- Ivanina, T., Blumenstein, Y., Shistik, E., Barzilai, R. & Dascal, N. Modulation of L-type Ca²⁺ channels by Gβγ and calmodulin via interactions with N and C termini of α1C. *J. Biol. Chem.* **275**, 39846–39854 (2000).
- Xiao, R. P., Cheng, H., Lederer, W. J., Suzuki, T. & Lakatta, E. G. Dual regulation of Ca²⁺/Calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. *Proc. Natl Acad. Sci. USA* 91, 9659–9663 (1994).

Wu, Y., Dzhura, I., Colbran, R. J. & Anderson, M. E. Calmodulin kinase and a calmodulin-binding 'lQ' domain facilitate L-type Ca²⁺ current in rabbit ventricular myocytes by a common mechanism. *J. Physiol. (Lond.)* 535, 679–687 (2001).

- Witcher, R. D. et al. Subunit identification and reconstitution of the N-type Ca²⁺ channel complex purified from brain. *Science* 261, 486–489 (1993).
- Dolphin, A. C. Mechanisms of modulation of voltagedependent calcium channels by G proteins. *J. Physiol.* (*Lond.*) 506, 3–11 (1998).
- Armstrong, C. M. & Hille, B. Voltage-gated ion channels and electrical excitability. *Neuron* 20, 371–380 (1998).
 Guerini, D. Calcineurin: not just a simple protein
- Guerini, D. Calcineurin: not just a simple protein phosphatase. *Biochem. Biophys. Res. Commun.* 235, 271–275 (1997).
 - Saimi, Y. & Kung, C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 64, 289–311 (2002).
- Heizmann, C. W. Calcium signaling in the brain. Acta Neurobiol. Exp. (Warsz.) 53, 15–23 (1993).
 Meuth, S., Pape, H.-C. & Budde, T. in Göttingen
- 103. Meuth, S., Pape, H.-C. & Budde, I. In *Gottingen Neurobiology Report 2001* (eds Elsner, N. & Kreutzberg, G. W.) 837 (Thieme, Stuttgart, 2001).
- Meyers, M. B. *et al.* Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca²⁺ channels. *J. Biol. Chem.* 273, 18930–18935 (1998).

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft and Kultusministerium LSA. We thank E. D. Gundelfinger for critical reading of the manuscript before submission, and R. Ziegler for continuous assistance in our work.

Online links

DATABASES

The following terms in this article are linked online to:

 $\begin{array}{l} \label{eq:loss_loss} \mbox{LocusLink}, \mbox{http://www.ncbi.nlm.nih.gov/LocusLink/} \\ \mbox{calbindin-D}_{38} [calmodulin | calpain | calretinin | CalMKII | MAP2B | \\ \mbox{parvalbumin | PKA | PP1 | PP2A | PP2B | sorcin | α1-subunit | \\ \mbox{a2-subunit | } β-subunit | γ-subunit | } \\ \end{array}$

FURTHER INFORMATION

Encyclopedia of Life Sciences: http://www.els.net/ calcium and neurotransmitter release | calcium channel diversity | calcium channels | calcium signalling and regulation of cell function | calcium-binding proteins | EF-hand calcium-binding proteins | sodium, calcium and potassium channels

Institut für Physiologie: http://www.med.uni-magdeburg.de/fme/institute/iphy/ The Ion Channel Web Page: http://phy025.lubb.tuhsc.edu/Neely/ionchann.htm

Access to this interactive links box is free online.