

Stariford Artificial Intelligence Laboratory
Memo AIM-289

August 1976

Computer Science Department
Report No. STAN-G-7 6-5 74

SAIL

edited by

John F. Reiser

ABSTRACT

Sail is a high-level programming language for the PDP-10 computer, It includes an
extended ALGOL 60 compiler and a companion set of execution-time routines. In
addition to ALGOL, the language features: (1) flexible linking to hand-coded machine
language algorithms, (2) complete access to’ the PDP-10 I/O facilities, (3) a complete
system of compile-time arithmetic and logic as well as a flexible macro system, (4 a
high-level debugger, (5) records and references, (6) sets and lists, (7) an associative
,data structure, (8) independent processes (9) procedure varaiables, (10) user
modifiable error handling, (11) backtracking, and (12) interrupt facilities.

This manual describes the Sail language and the execution-time routines for the typical
Sail user: ‘a non-novice programmer with some knowledge of ALGOL. I t l ies
somewhere between being a tutorial and a reference manual.

This m&l w’rs supported by the Advrmod Rorotrch Projects Agency undrr Contrrct MDA 903-76-C-0206.

The views rnd conclusions contrined in this document ara thorr of the ruthor rnd should not br intrrprotrd 8s nrcessrrily
roprosonting the officirl policks, rithrr oxprrssod or impliod, of Strnford University, ARPA, or thr United Strtos Govarnmrnt.

Wo thrnk Bomrrd A. Goldhirsch rnd the Institute for Advrncoment of S8iling for their kind permission to use the cover design of
the August 1976 issue of SAIL nugrrino.

Repro&cod ii the U.S.A Avrikblo from the lJ8tionrl fechnicrl lnformrtion Sorvico, Springfield, Virgini 22161.

I SAIL -

I

PREFACE

PREFACE

HISTORY OF THE LANGUAGE
The GOGOL III compiler, developed principally
by Dan Swinehart a t the Stanford Art i f ic ia l
Intelligence Project, was the basis for the non-
LEAP portions of SAIL. Robert Sproull joined
Swinehart in incorporating the features of LEAP
The first version of the language was released
in N o v e m b e r , 1 9 6 9 . SAIL’s intermediate
development was the responsibility of Russell
T a y l o r , J i m L o w , a n d Hanan S a m e t , w h o
int reduced processes , procedure variables,
interrupts, contexts, matching procedures, a
new macro system, and other features. Most

recently John Reiser, Robert Smith, and Russell
Taylor maintained and extended SAIL. They
added a high-level debugger, conversion to
TENEX, a pr int s tatement , and records and
references.

LEARNING ABOUT SAIL
A novice programmer (or one who is unfamiliar
with ALGOL) should start with the Sail Tutorial
[SmithN). An experienced programmer with a
knowledge of ALGOL should be able to use this
Sail manual at once. Begin with Appendix A,
C h a r a c t e r s ; i n t h i s m a n u a l t h e s y m b o l “-”
designates the character with code ‘030. For
the first reading, a light skim of sections 1, 2, 3,
4 , and 8 , fo l lowed by a carefu l perusal o f
s u b s e c t i o n 2 1 . 1 s h o u l d b e a d e q u a t e t o
familiarize the new user with the differences
between ALGOL and SAIL and allow him to start
writing programs in SAIL. The other sections of
this manual are relatively self contained, and
can be read when one wants to know about the
features they describe. The exceptions to this
rule are sections 12, 13, and 14. These
d e s c r i b e t h e b a s i c s o f t h e L E A P a n d a r e
essential for understanding of the following
sect ions.

Special effort has gone into making the index
more comprehensive than in previous versions
of this manual. Please use it.

CHANGES IN THE LANGUAGE
1 There are no known incompatibilit ies at the

I

SAIL source level with the language described
i n [vanLehn). PRINT, BAIL, operation under
TENEX, and records are major additions to the
language. Significant revisions to [vanLehn] or

points deserv ing emphasis are marked by
vertical bars in the margin. This paragraph is
so marked, as an example.

OPERATING SYSTEMS
Sail runs under several operating systems. In
this manual distinction is drawn between the
o p e r a t i n g s y s t e m a t t h e S t a n f o r d A r t i f i c i a l
In te l l igence Laboratory (SUAI), the TOPS- 10
operating s y s t e m f r o m D i g i t a l E q u i p m e n t
Corporation, the TENEX operating system from
Bolt Beranek and Newman, and the TYMSHARE
operating system. The major d ist inct ion is
b e t w e e n T E N E X a n d n o n - T E N E X s y s t e m s ,
a l though the d i f ferences between SUAI a n d
TOPS-10 are a lso s igni f icant . The TOPS-20
operating s y s t e m f r o m D i g i t a l E q u i p m e n t
Corporation is the same as TENEX as far as Sail
is concerned. TENEX users should substitute
“<SAIL>” for “SYS:” wherever the latter appears
in a fi le name (except when talking to t h e
LOADER).

UNIMPLEMENTED CONSTRUCTS
The following items are described in the manual
as if they existed. As the manual goes to
press, they are not implemented.

1. NEW (<context-variable>). Creates a new
item which has a datum that is a context.

2. Using a <context-variable> instead of a list
of var iables in any of the REMEMBER,
FORGET or RESTORE statements.

3. Using 00 in the expression n of REMOVE n
FROM list.

4. ANY@ANY?ANY searches in Leap (searches
where no constraints at all are placed on
the triple returned.)

5. CHECKED itemvars (the dynamic
comparison of the datum type of an item
to the datum type of the CHECKED itemvar
to which the item is being assigned.) It is
current ly the user ’s responsibi l i ty to
insure that the type of the item agrees
wi th the type of the i temvar whenever
DATUM is used.

ACKNOWLEDGEMENTS
Les Earnest and Robert Smith assisted the
editor in PUB wizardry and reading drafts.

. . .
III

SAIL - TABLECFCONTENTS

T A B L E O F C O N T E N T S . 7 EXECUTION TIME ROUTINES

SECTION

1 PROGRAMS AND BLOCKS

1 S y n t a x
2 S e m a n t i c s

2 ALGOL DECLARATIONS

1 S y n t a x
2 Restr ict ions
3 E x a m p l e s
4 S e m a n t its
5 Separately Compiled Procedures

3 ALGOL STATEMENTS

1 S y n t a x
2 S e m a n t its

4 _ ALGOL EXPRESSIONS

1 S y n t a x
2 Type Conversion
3 S e m a n t its

5 ASSEMBLY LANGUAGE STATEMENTS

1 S y n t a x
2 S e m a n t its

6 INPUT/OUTPUT ROUTINES

PAGE

i

3
4
5
5

12

14
15

:;
24

29
29

1 Execution-time Routines in General 33
2 I/O Channels and Files 33
3. Break Characters 36
4 I/O Routines 39
5 TTY and PTY Routines 43
6 Example of TOPS-10 l/O 45

1 Type Conversion Routines 46
2 String Manipulation Routines 47
3 Liberation-from-Sail Routines 48
4 Byte Manipulation Routines 50
5 Other Useful Routines 50
6 Numerical Routines 51

8 P R I N T

1 S y n t a x
2 Semantics

53
53

9 MACROS AND CONDITIONAL COMPILATION

1 Syntax 56
2 Delimiters 57
3 Macros 57
4 Macros with Parameters 5 9
5 Conditional Compilation 60
6 Type Determination at Compile Time 61
7 Miscellaneous Features 62
8 H i n t s 62

10 RECORD STRUCTURES

1 Introduction
2 Declaration Syntax
3 Declaration Semantics
4 Allocation

, 5 F i e l d s
6 Garbage Collection
7 Internal Representations
8 Handler Procedures
9 More about Garbage Collection

11 TENEX ROUTINES

1 Introduction
2 TOPS-10 Style Input/Output
3 TENEX Style Input/Output
4 Terminal Handling
5 Utility TENEX System Calls

12 LEAP DATA TYPES

1 Introduction
2 S y n t a x
3 Semantics

64
64
64
65
65

E
66
67

69

76:
76
80

83

i”4

V

TABLE OF CONTENTS

13 LEAP STATEMENTS

1 S y n t a x
2 Restr ict ions
3 S e m a n t i c s
4 Searching the Associative Store

14 LEAP EXPRESSIONS

1 S y n t a x
2 S e m a n t its

15 BACKTRACKING

1 Introduct ion
2 S y n t a x
3 S e m a n t i c s

16 PROCESSES

1 Introduct ion
2 S y n t a x
3 S e m a n t i c s
4 P r o c e s s Runtimes

17 EVENTS

1 S y n t a x
2 Introduct ion
3 Sail-defined Cause and Interrogate

97
98

101
101
101

104
104
104
107

.

110
110
110

4 , User-defined Cause and Interrogate 112 APPENDICES

18 PROCEDURE VARIABLES

1 S y n t a x
2 S e m a n t its

114
114

19 INTERRUPTS

1 Introduction 117
2 Interrupt Routines 117
3 Immediate Interrupts 119
4 Clock Interrupts 120
5 Deferred Interrupts 121

SAIL

20 LEAP RUNTIMES

1 Types and Type Conversion 123
2 Make and Erase Breakpoints 124
3 P n a m e Runtimes 124
4 Other Useful Runtimes 125
5 Runtimes for User Cause and Interrogate

Procedures 126

21 BASIC CONSTRUCTS

1 S y n t a x 1 2 8
2 Semantics 1 2 8

22 USING SAIL

1 For TOPS-10 Beginners 131
2 For TENEX Beginners 131
3 The Complete use of Sail 132
4 Compiling Sail Programs 132
5 Loading Sail Programs 136
6 Starting Sail Programs 137
7 Storage Reallocation with .REEnter 137

23 DEBUGGING SAIL PROGRAMS

1 E r r o r M e s s a g e s 138
2 Debugging 140
3 BAIL 141

A Characters 150
B Sail Reserved Words 151
C Sail Predeclared ldent if iers 152
D Indices for Interrupts 153
E Bit Names for Process Constructs 1 5 4
F Statement Counter System 156
G Array Implementation 157
H String Implementation 1 5 8
I Save/Cont inue 159
.I Procedure Implementation 160

REFERENCES 163

INDEX 165

vi

SAIL -

SECTION 1

PROGRAMS AND BLOCKS

1.1 Syntax

<program>
::= <block>

<block>
::- <block-head> ; <compound-tail>

<block-head>
::- BEGIN <declaration>
::- BEGIN <block-name> <declaration>
::- <block-head> ; <declaration>

<compound-t ai I>
::= <statement> END
::- <statement> END <block-name>
::- <statement> ; <compound-tail>

<compound-statement>
::- BEGIN <compound-tail>
::- BEGIN <block-name> <compound-tail>

<statement>
::= <block>
::- <compound-statement>
::- <require specification>
::- <assignment>
::= <swap-statement>
::- <condi t ional,st atementa
::- <if statement>
::- <go_to-statement>
::- <for-statement>
:- <while-statement>
::= <do-statement>
::- <case-statement>

I ::- <print-statement>
::- <return-statement>
::- <done-statement>
::- <next-statement>
::- Wont inue-st atement>
::= <procedure-statement> -
::- <safety-statement>
::= <backtracking-statement>
::- <code-block>
::- <leap-statement>

PROGRAMS ‘AND BLOCKS

::= <process-statement>
::- <event-statement>
::- <string constant> <statement>
::- <label-%entifier> : <statement,
::- <empty>

1.2 Semant its

DECLARATIONS
Sail programs are organized in the traditional
block structure of ALGOL-60 [Nauer].

Declarations serve to define the data types and
dimensions of simple and subscripted (array)
variables (arithmetic variables, strings, sets,
lists, record pointers, and items). They are also
used to describe procedures (subroutines) and
record classes, and to name program labels.

Any identifier referred to in a program must be
described in some declaration. An identifier
may only be referenced by statements within
the scope (see page 5) of its declaration.

STATEMENTS
As in ALGOL, the statement is the fundamental
unit of operation in the Sail language. Since a
statement w i t h i n a b l o c k o r compound
statement may itself be a block or compound
statement, the concept of statement must be
understood recursively.

The- block representing the program is known
as the “outer block”. All blocks internal to this
one will be referred to as “inner blocks”.

BLOCK NAMES
The block name construct is used to describe
the b lock st ructure of a Sai l program to a
symbolic debugging routine (see page 140).
The name of the outer block becomes the title
of the binary output fi le (not necessarily the
file name). In addition, if a block name is used
following an END then the compiler compares it
w i t h t h e b l o c k n a m e w h i c h f o l l o w e d t h e
corresponding BEGIN. A mismatch is reported
to the user as evidence of a missing (extra)
BEGIN or END somewhere.

The <string-constant> <statement> construct is
equivalent in action to the <statement> alone;
that is, the string constant serves only as a
comment.

1

PROGRAMS AND BLOCKS

EXAMPLES

Given:
S is a statement,
SC ir a Compound Statement,
D is a Declaration,
B iu a Block.

Then: ’

(SC) BEGIN S; S; S; . . . i S END

(SC) BEGIN “SORT” S; S; . . . W END “SORT”

(B) BEGiN 0; 0; 0; . . i S; S; Si I. i S END

(B) BEGIN “ENTER NEW INFO” 0; 0; . . . ; ’
S; . . iS END

are syntactically valid Sail constructs.

2

SAIL

SAIL - ALGOL DECLARATIONS

SECTION 2

ALGOL DECLARATIONS

2.1 S y n t a x

<id-list>
::- <ident if ier>
::- <identifier> , <id-list>

<declaration>
::- <type-declaration>
::- <array declaration>
::- <preioad,specif ication>
::- <label-declaration>
::= <procedure-declaration>
::- <synonym-declaration>
::- < r e q u i r e - s p e c i f i c a t i o n >

I ::= <context-declaration>
::= <leap-declaration>

I ::- <record class-declaration>
::- <protect acs declarations
::= <cieanupIdeciaration>

- ::- <type-qualifier> <declaration>

<simple-type>
::= BOOLEAN
::- INTEGER
::- REAL

I ::- RECORD-POINTER (<ciassidJist>)
::- STRING

<type-qualifier>
::- EXTERNAL
::- FORTRAN
::- FORWARD
::- INTERNAL
z- OWN
::- RECURSIVE
::- SAFE
::- SHORT
::= SIMPLE

<type-declaration>
::- <simple-type> <id-list>
::- <type-qualifier> <type-declaration>

<array-declaration>
::= <simple-type> ARRAY <array-list>
::- <type-qualifier> <array declarations

<array-list>
::= <array-segment>
::- <array-list> , <array-segment>

<array-segment>
::- <id-list> [<bound-pair-list>]

<bound-pair-list>
::- <bound-pair>
::= <bound-pair-list> , <bound-pair>

<bound-pair>
::- <lower-bound> : <upper-bound>

<lower-bound>
::- <algebraic-expression>

<upper-bound>
::- <algebraic-expression>

<preload,specif ication>
::- PRELOAD,WITH <preloadJist>

I ::- PRESET-WITH <preloadJist>

<preioad,list>
::- <preload,element>
::- <preioadJist> , <preload,element>

<preload,element>
::- <expression>
::- [expression J <expression>

<label-declaration>
::T LABEL <id-list>

<procedure-declaration>
::= PROCEDURE <ident if ier>

<procedure-head>
<procedure-body>

::- <simple type> PROCEDURE <identifier>
<procedure-head> <procedure-body>

::= <type,qualif ier>
<procedure-declaration>

3

ALGOL DECLARATIONS SAIL

<procedure-head>
::= <empty>
::= (<formaigaram,deci>)

<procedure-body>
::= <empty>
::= ; <statement>

<require-element>

I ::= <constant-expression> <require,spec>
::= <procedure-name> INITIALIZATION

I
::= <procedure-name> INITIALIZATION

[<phase>]

<require,spec>

<formal-param,deci>
::- <formal,parameterJist>
::- ~formal_parameterJist> ;

<formalgaram,deci>

<formalgarameterJist>
::= <formal-type> 4dJist>

I
::= <formal-type> <id-list>

(<default-value>)

<formal-type>
::= <simple,formal,type>
::= REFERENCE <simple-formal-type>
::- VALUE <simple-formal-type>

<simple,formalJype>
::= <simple-type>
::= <simple-type> ARRAY
::= <simple-type> PROCEDURE

::= STRING-SPACE
::= SYSTEM,PDL
::= STRING,PDL
::- ITEM-START
::- NEWJTEMS
::- PNAMES
::- LOAD-MODULE
::- LIBRARY
::= SOURCE-FILE
::= SEGMENT-FILE
::= SEGMENT-NAME
::= POLLINGJNTERVAL
::= POLLING-POINTS
::= VERSION
::- ERROR-MODES
::= DELIMITERS
::= NULL-DELIMITERS
::= REPLACE-DELIMITERS
::= UNSTACK-DELIMITERS
::= BUCKETS
::= MESSAGE
::- COMPILER-SWITCHES

<synonym-declaration>
::- LET <synonymJist>

2.2 Restrict ions

<synonymJist>
::- <synonym>
::- <synonymJist> , <synonym>

For simplicity, the type-qualifiers are listed in
only one syntactic class. Although their uses
are always valid when placed according to the
above syntax, most of them only have meaning
when applied to particular subsets of these
product ions:

<synonym>
::- <identifier> - <reserved-word>

<cleanup-declaration>
::- CLEANUP <procedureJdentifier Jist,

<requireLspecification>
::- REQUIRE <requireJiet>

SAFE is only meaningful in array
declarations.

INTERNAL/EXTERNAL have no
meaning in formal parameter
declarations.

SIMPLE, FORWARD, RECURSIVE, and
F O R T R A N h a v e m e a n i n g o n l y i n
procedure type specifications.

<require-list>
::- <require-element>
::- <requireJist> , <require-element>

4

S H O R T h a s m e a n i n g o n l y w h e n
applied to INTEGER or REAL entities.

SAIL - ALGOL DECLARATIONS

F o r a r r a y d e c l a r a t i o n s i n t h e o u t e r b l o c k BEGIN “SAMPLE BLOCK”

substitute Qonst ant-expression> for INTEGER I, J, K;

<algebraic-expression> in the productions for REAL X, Y;
<lower-bound> and <upper-bound>. STRING A;

INTEGER PROCEDURE P (REFERENCE REAL X);
BEGIN “P”
D; D; D; . . . ;S; . . . ; S

END “P”;

A label must be declared in the innermost block
in which the statement being labeled appears
(more information, page 16). The syntax for
procedure declarations requires semantic
embellishment (see page 7) in order to make
total. sense. In particular, a procedure body
may be empty only in a rest r ic ted c lass of
declarations.

,

REAL ARRAY DIPHTHONGS (0: 10, 1: 100);

s; s; s; s
END “SAMPLE BLOCK”

2.3 ExampI 8 s

Let I, J, K, L, X, Y, and P be identifiers, and let S
be a statement.

(<typa,declrration~)
INTEGER I, I, K
EXTERNAL REAL X, Y
INTERNAL STRING K

(<array-declaration>)
INTEGER ARRAY X [0:10, O:lO]
REAL ARRAY Y [X:P(L)]; Comment illegal

in outer block unless P is a macro
- STRING ARRAY I [O:IF BIG THEN 30 ELSE 31

(<label-declaration,)
LABEL L, X, Y

(<procedure declaration>)
PROCEDURE P; S
PROCEDURE P (INTEGER I, J;

REFERENCE REAL X; REAL Yh S
INTEGER PROCEDURE P (REAL PROCEDURE I;

STRING I, Ji INTEGER ARRAY K); S
EXTERNAL PROCEDURE P (REAL XI
FORWARD INTEGER PROCEDURE X (INTEGER I)

Note that these sample declarations are all
g iven wi thout the semicolons which would
normajly separate them from the surrounding
declarations and statements. Here is a sample
block to bring it all together (again, let S be
any statement, D any declaration, and other
identifiers as above):

2 . 4 Semant its

SCOPE OF DECLARATIONS
Every block automatically introduces a new
level of nomenclature. Any identifier declared
in a block’s head is said to be LOCAL to that
block. This means that:

a. T h e e n t i t y r e p r e s e n t e d b y t h i s
identifier inside the block has no
existence outside the block.

b. Any entity represented by the same
identifier outside the block is
completely inaccessible (unless it
has been passed as a parameter)
inside the block.

An identifier occurring within an inner block
and not declared wi th in that b lock wi l l be
nonlocal (global) to it; that is, the identifier will
represent the same entity inside the block and
in the block or blocks within which it is nested,
up to and inc luding the level in which the
identifier is declared:

The Scope of an entity is the set of blocks in
which the ent i ty is represented, us ing the
above rules, by its identifier. An entity may
not be referenced by any statement outside its
scope.

TYPE QUALIFIERS
An array, variable, or procedure declared OWN
will behave as if it were declared globally to
the current procedure; the OWN type qualifier
on a var iab le , e tc . dec lared in a b lock not
nested inside a procedure declaration will have
no effect. This means that in a second call of a
procedure with OWN locals (or a recursive call)

5

ALGOL DECLARATIONS SAIL

the OWN variables will not be reinitialized; they
will have the values that they had when the
first call of the procedure finished..
Furthermore, OWN arrays, e tc . wi l l not be
deallocated upon exiting the procedure in which
they are declared.

INTERNAL and EXTERNAL procedures, variables,
etc. le t one l ink programs that are loaded
together but were compiled separately. See
page 12 for more information.

RECURSIVE, SHORT, FORTRAN, FORWARD,
SIMPLE, and SAFE will be explained when the
data types they modify are discussed.

NUMERIC DECLARATIONS
Identifiers which appear in type declarations
with types REAL or INTEGER can subsequently
b e u s e d t o r e f e r t o n u m e r i c v a r i a b l e s . A n
I n t e g e r v a r i a b l e m a y t a k e o n v a l u e s f r o m
-2t35 to 2t35-1 (-2T26 t o 2 7 2 6 - l f o r S H O R T
INTEGERS). A Real variable may take on
positive and negative values from about lot-38
t o lot38 w i t h a p r e c i s i o n o f 2 7 b i t s (s,ame
range for SHORT REALS as for SHORT
INTEGERS). REAL and INTEGER variables (and
constants) may be used in the same arithmetic
expressions; type conversions are carried out
automatically (see page 23) when necessary.

The advantage of SHORT reals and integers is
that the conversion from integer to real is sped
by a factor of 8 if either the integer or the real
is SHORT. See page 23 for more information.

The BOOLEAN type is identical to INTEGER.
BOOLEAN and algebraic expressions are really
equivalent syntactically. The syntactic context
in which they appear determines their meaning.
Non-zero integers correspond to TRUE and 0
corresponds t o F A L S E . The dec lsra tor
BOOLEAN is included for program clarity.

STRING DECLARATIONS
A variable defined in a String declaration is a
two-word descriptor containing the information
necessary to represent a Sail character string.

A S t r i n g m a y b e t h o u g h t o f a s a variable-
length , one-d imensional ar ray of 7-bit ASCII
characters. Its descriptor contains a character
count and a byte pointer to the first character
(see page 158). Strings originate as constants
at compile time (page 130), as the result of a
String INPUT operation from some device (see

page 39), or from t h e c o n c a t e n a t i o n o r
decomposition of already existing strings (see
page 27).

When strings appear in arithmetic operations
or vice-versa, a somewhat arbitrary conversion
is per formed to obta in the proper type (by
arbitrary we do not mean to imply random --
see page 23) . F o r t h i s r e a s o n a r i t h m e t i c , s

1 String, and Record-pointer variables are
referred to as “algebraic variables” and their
corresponding expressions are called “algebraic
expressions” (to differentiate them them from
the variables and expressions of LEAP -- see
page 83).

ARRAY DECLARATIONS
In general, any data type which is applicable to
a simple variable may be applied in an Array
declaration to an array of variables. The entity
represented by the name of an Array, qualified
with subscript e x p r e s s i o n s t o l o c a t e a
particular element (e.g. A[l, J]) behaves in every
way like a simple variable. Therefore, in the
future we .shall refer to both simple variables
and single elements of Arrays (subscripted
variables) as “variables”. The formal syntax for
<variable> can be found on page 128.

For an Array which’ is not qualified by the
SAFE attribute, nor had a NOW-SAFE statement
d o n e o n i t (Now-Safe - s e e p a g e 21), e a c h
subscript will be checked to ensure that it falls
within the lower and upper bounds given for
the dimension it specifies. Subscripts Outside
the bounds trigger an error message and job
abortion. The SAFE declaration inhibits this
checking, resul t ing in faster , smal ler , and
bolder code.

~ Arrays which are allocated at compile time
(OWN arrays and arrays in the outer block) are
restricted to 5 or fewer dimensions. There is
no limit to the number of dimensions allowed
for an Array which is dynamically allocated.
However, the efficiency of Array references
tends to decrease for large dimensions. Avoid
large dimensionality. +

OWN Arrays are available in part. They must
be declared with constant bounds, since fixed
storage is allocated. They are NOT initialized
w h e n t h e p r o g r a m i s s t a r t e d o r r e s t a r t e d
(except in preloaded Arrays, see page 7). A
certain degree of extra efficiency is possible in
accessing these Arrays, since they may be

6

SAIL

assigned absolute core l o c a t i o n s b y t h e
compiler, e l iminat ing some of the address
arithmetic. Constant bounds always add a little
e f f i c i e n c y , e v e n i n i n n e r b l o c k s . Arrays
declared in the outer block must have constant
bounds, since no variable may yet have been
assigned a value. They are thus automatically
made OWN. For more details concerning the
internal structure of Arrays see page 140 and
page 157.

PRELOAD SPECIFICATIONS
Any OWN arithmetic or String Array may be
“pre-loaded” at compile time with constant
information by preceding its declaration with a
<preload-specification>. This specification
gives the va lues which are to be p laced in
c o n s e c u t i v e c o r e l o c a t i o n s o f t h e A r r a y s
declared immediately following the
<preload,specification>. “Immediately”, in this
case, means all identifiers up to and including
o n e w h i c h i s f o l l o w e d b y b o u n d - p a i r - l i s t
brackets (e .g . in REAL ARRAY X, Y, Z[O:lO],
W[1:5]; -- preloads X, Y, and Z; not W). It is the
user ’s responsib i l i ty to guarantee that the
p r o p e r v a l u e s w i l l b e o b t a i n e d u n d e r t h e
subscript mapping, namely: arrays are stored
by rows; if A[I, JJ is stored in location 10000 ,
then A[l, J+l] is stored in location 10001.

The current values of non-String pre-loaded
A r r a y s w i l l n o t b e lost by restarting the
program; they will not be re-initialized or re-
preloaded. For preloaded String Arrays, the
non-constant elements are set to NULL by a
restart.

Algebraic ty.pe conversions will be performed
at compile-time to provide values of the proper
types to pre-loaded Arrays. All expressions in
these specifications must be constant
expressions -- that is, they must contain only
constants and algebraic operators. The
compiler will not allow you to fi l l a n A r r a y
b e y o n d i t s c a p a c i t y . Y o u m a y , h o w e v e r ,
prov ide a number of elements less than the
total size of the Array; remaining elements will
be set to zero or to the null string.

Example: ’

PRELOAD-WITH [5] 0, 3, 4, [4) 6, 2;
INTEGER ABRAY TABL [I :4, la];

The first five elements of TABL will be
initialized to 0 (bracketed number is *used as a

ALGOL DECLARATIONS

repeat argument). The next two elements will
be 3 and 4, followed by four 6’s and a 2. The
array will look like this:

1 2 3 (second subscript 1
118 8 8

(first 218 8 3
rubscr ipt) 314 6 6

416 6 2

PRESET-WITH is just like PRELOAD-WITH except
that an array which is PRESET is placed in the
upper segment of a /H compilation. This allows
constant arrays to be in the shared portion of
the code.

PROCEDURE DECLARATIONS
If a Procedure is typed then it may return a
va lue (see p a g e 18) of the specified type. If
formal parameters are specified then they must
be supplied with actual parameters in a one to
one correspondence when they are called (see
page 28 and page 19).

F O R M A L P A R A M E T E R S ’
Formal parameters, when speci f ied, provide
information to the body (executable portion) of
the Procedure about the kinds of values which
will be provided as actual parameters in the
call. The type and complexity (simple or Array)
are specified here. In addi t ion, the formal
parameter indicates whether the value (VALUE)
or a d d r e s s (R E F E R E N C E) o f t h e a c t u a l
parameter will be supplied. If the address is
supplied then the variable whose identifier is
given as an actual parameter may be changed
by the Procedure. This is not the case if the
value is given.

To pass a PROCEDURE by value has no readily
determined meaning. A R R A YS passed by value
(requiring a complete copy operation) are not
implemented. Therefore these cases are noted
as errors by the compiler.

The proper use of actual parameters is further
discussed on page 19 and page 28.

DEFAULT PARAMETER VALUES
Default values for trailing parameters may be
specified by enclosing the desired value in
parentheses following the
declaration.

parameter

PROCEDURE FOO (REAL X; INTEGER I (2);
STRING S (“FOO”); REAL Y (3.14 159));

7

ALGOL DECLARATIONS SAIL

If a defaulted parameter is left Out Of a
procedure call then the compiler fi l ls in the
default automatically. The following all compile
the same code:

FOO (A+B);
FOO (A+B, 2, “FOO”);
FOO (A+B, 2, “FOO”, 3.14 159);

Only VALUE parameters may be defaulted, and
the default values must b8 C o n s t a n t
expressions. A parameter may not be left out
of the middle of the parameter list; i.e.,
FOO (A+B, “BAR”) won’t work. Finally, it
s h o u l d b e ‘ n o t e d t h a t t h e c o m p i l e d c o d e
assumes t h a t a l l p a r a m e t e r s a r e a c t u a l l y
present in the call, so be careful about odd
START-CODE or INTERNAL-EXTERNAL linkages.
However, APPLY will fill in default values if not
enough actual parameters are supplied in an
interpreted call.

FORWARD PROCEDURE DECLARATIONS
A Procedure’s type and parameters must be
described before the Procedure may be called.
Normally this is accomplished by specifying the
procedure declarat ion in the head of some
block conta in ing the cal l . I f , however , i t is
necessary to have two Procedures, declared in
some block head, which are both accessible to
statements in the compound tail of that block
and to each other, then the FORWARD construct
p e r m i t s t h e d e f i n i t i o n o f t h e p a r a m e t e r

~ i n f o r m a t i o n f o r o n e o f t h e s e PrOC8dUr8S i n
advance of i ts dec larat ion . The Procedure
body must be empty in a forward procedure
declaration. When the body of the Procedure
described in the forward declaration is actually
declared, th8 types of the Procedure and of its
parameters must b e ident ical in both
declarations. The declarations must appear a t
the same level (within the s a m e b lock head) .
Exampie:

BEGIN “NEED FORWARD”
FORWARD INTEGER PROCEDURE Tl (INTEGER I);

COMMENT PARAMS DESCRIBED;
INTEGER PROCEDURE T2 (INTEGER J); I

RETURN (T 1 (J)+3); COMMENT CALL f i i
INTEGER PROCEDURE Tl (INTEGER I);

CGMMENT ACTUALLY DEFINE T 1;
RETURN (IF I= 15 THEN I ELSE T2 (i-1));

COMMENT CALLS T2;
. . .

-K+T I (L)i . . . ; LtT2 (K); . . .
END “NEED FORWARD”;

Notice that the forward declaration is required
only because BOTH Procedures are called in th8
body of the block. These procedures should
a l s o b e d e c l a r e d R E C U R S I V E i f r e c u r s i v e
entrance is likely. lf only Tl were called from
statements within the block then this example
could be implemented as:

BEGIN “NO FORWARD”
RECURSIVE INTEGER PROCEDURE Tl (INTEGER I);
BEGIN

INTEGER PROCEDURE T2 (J)i
RETURN (Tl (Jb3);

RETURN{ IF 1.15 THEN I
ELSE T2 (I-1));

END “T 1”;
. . .
KtTl (L);

. . .
END “NO FORWARD”;

RECURSIVE PROCEDURES
If a procedure is to be entered recursively then
the compiler must be instructed to provide code
for a l locat ing new local var iab les when the
Procedure is called and deallocating them when
it returns. Use the type-qualifier RECURSIVE in
the declaration of any recursive Procedure.

The compiler can produce much more efficient
code for non-recursive Procedures than for
recursive ones. W8 feel that this gain in
efficiency merits the necessity for declaring
Procedures to be recursive.

If a Procedure which has not b88n declared
recursive is called recursively then all its local
var iables (and temporary s torage locat ions
assigned by the compiler) will behave as if they
were global to the Procedure -- they will not
be reinitialized, and when the recursive call is
complete, the locals of the calling procedure
will reflect the changes made to them during
the recursive cal l . Otherwise, no i l l e f fects
should be observed.

SIMPLE PROCEDURES
Standard procedures contain a short prologue
that sets up some links on the stack and a
descriptor that is used by the storage allocation
system, the GOT0 solver , and some other
routines. For most procedures, this overhead is
insignificant. H o w e v e r , for smal l procedures
that just do a few simple statements and exit,
this overhead is excessive and unneeded. To

8

SAIL ALGOL DECLARATIONS

skip the prologue, just include SIMPLE in the
attribute list for the procedure. RESTRICTIONS:

1 . S i m p l e p r o c e d u r e s m a y n o t b e

I
Recursive and may not be SPROUTed
o r APPLYed.

2. ARRAY locals must be OWN. *

3 . Set and L is t loca ls must be OWN
(Sets and list are part of Leap, page
83).

4 . P r o c e d u r e s d e c l a r e d l o c a l t o a
simple procedure must also be of of
type SIMPLE, and may not reference
any of the parameters of the outer
simple procedure.

the type and name of an external Procedure
which is to be called using a Fortran cal l ing
s e q u e n c e . E i t h e r t h e o l d F40 o r t h e n e w
FORTRAN-10 calling sequence can be
generated, depending on the /A switch (page
134). All parameters to Fortran Procedures are
by reference. In fact, the procedure head part
of the declaration need not be included unless
the types expected by the Procedure d i f fer
from those provided by the actual parameters--
the number of parameters supplied, and their
types, are presumed correct. Fortran
Procedures are automatically External
Procedures. S e e p a g e 1 0 , p a g e 1 9 , p a g e
2 8 f o r m o r e i n f o r m a t i o n a b o u t Fortran
Procedures. Example:

FORTRAN PROCEDURE FPF;
_ YcFPF (X, 2);

5. One may not GO TO a s ta tement
o u t s i d e t h e b o d y o f t h e s i m p l e
procedure.

6 . RECORD,POINTERs m a y n o t b e
declared or passed as arguments to
other procedures, and the code must
not cause the compiler to create
RECORD-POINTER temporaries.

EXTERNAL PROCEDURES
A f i le compi led by Sai l represents e i ther a
“main” program or a collection of independent
procedures to be called by the main program.
The method for preparing such a collection of
P r o c e d u r e s i s d e s c r i b e d i n p a g e 1 2 . T h e
EXTERNAL and FORTRAN type-qualifiers allow
description of the types of these Procedures
a n d t h e i r p a r a m e t e r s . A n E X T E R N A L o r
F O R T R A N p r o c e d u r e d e c l a r a t i o n , l i k e t h e
FORWARD declarat ion, does not inc lude a
procedure body . Both declarations instead
result in requests to the loader to provide the
addresses of these Procedures to all statements
which call them. This means that an EXTERNAL
Procedure declaration (or the declaration of any
External identifier) may be placed within any
block head, thereby controll ing the scope of
this External identifier within this program.

PARAMETRIC PROCEDURES
The calling conventions for Procedures with
Procedures as arguments, and for the execution
of these parametric Procedures, are described
on page 19 and page 28. Any Procedure P P
which is to be used as a parameter to another
Procedure CP must not have any Procedure or
array parameters, or any parameters called by
value. In other words, PP may only have simple
reference parameters. The n u m b e r o f
parameters supplied in a call on PP within CP,
and their types, will be presumed correct, and
should not be specified in the procedure head.
Example:

PROCEDURE CP (INTEGER PROCEDURE FP);
BEGIN INTEGER A, I; REAL X;
“.
AtFP (I, Xh COMMENT I AND X PASSED BY

REFERENCE, NO TYPE CONVERSION;
END “CP”;

INTEGER PROCEDURE PP (REFERENCE INTEGER J;
REFERENCE REAL Y);

BEGIN . . .
END “PP”;

. . .
CP (PP);

Any Sail Procedure which is referenced via
t h e s e e x t e r n a l d e c l a r a t i o n s m u s t b e a n
INTERNAL Procedure. That is, the type-qualifier
INTERNAL must appear in the actual declaration
of the Procedure. Again, see page 12.

DEFAULTS IN PROCEDURE DECLARATIONS
If no VALUE or REFERENCE qualification appears
i n t h e d e s c r i p t i o n then the following
qualifications are assumed:

The type-qualifier FORTRAN is used to describe
VALUE Integer, String, Real, Record-pointer,

Set, List variables.
REFERENCE Arrays, Contexts and Procedures.

9

ALGOL DECLARATIONS

RESTRICTIONS ON PROCEDURE DECLARATIONS

SAIL

1) Fortran P r o c e d u r e s c a n n o t h a n d l e
Str ing parameters . Nor can a
Fortran Procedure return a string a s
a result.

2) L a b e l s m a y n e v e r b e p a s s e d a s
arguments to Procedures.

3) Procedures may not have t h e t y p e
“CONTEXT”.

4) Arrays and Context parameters must
always be passed by reference. .

ALLOCATION AND DEALLOCATION
A l l s i m p l e var iables (in teger , rea l , s t r ing,
boolean, r e c o r d p o i n t e r) a r e a l l o c a t e d a t
compile time. Non-own simple variables that
are local to a r e c u r s i v e p r o c e d u r e a r e a n
except ion to th is and are a l located (on the
stack) upon instantiation of the procedure; they
a r e d e a l l o c a t e d w h e n t h e i n s t a n t i a t i o n i s

I

terminated. S i m p l e v a r i a b l e s w h i c h a r e
declared but not subsequently referenced are
not allocated at all.

Al? outer-block and OWN arrays are allocated at
compile time. All other arrays are a l located
w h e n the b lock of the i r def in i t ion is entered,
and deallocated when it is exited.

INITIALIZATION AND REINITIALl2ATION
Upon allocation, everything is initialized to 0 or
the NULL string (except preloaded arrays, w.hich
a r e i n i t i a l i z e d t o t h e i r t h e v a l u e s o f t h e i r
PRELOAD). Nothing is reinitialized unless the
program is restarted by typing tC and REEnter.
This lack of reinitialization is noticeable when
one enters a block for the second time, and that
block is not the body of a recursive procedure.
For example,

STRING PRDCEdURE READIN;
BEGIN

INTEGER CHANNEL, BRTAB;
IF BRTAbO THEN BRTAB c INIT (CHANNEL);
RETURN (INPUT (CHANNEL, BRTABh

END;

BRTAB is 0 then, whereas it is not for any of
the other ca l ls . I f READIN w e r e a r e c u r s i v e
procedure then CHANNEL and BRTAB would be
allocated and hence initialized with every call.

When one REEnters a program, some things are
reinitialized and some are not. Namely, strings
and non-preloaded arrays will be reinitialized,
but simple variables will not; Preloaded arrays
will not be re-preloaded.

SYNONYMS
T h e S a i l S y n o n y m (“LET”) p e r m i t s o n e t o
declare any ident i f ier to act as a reserved
word. The effect of the reserved word is not
changed; it may be used as well as the new
identifier. Synonyms follow the same scope
rules that identifiers used for variables, arrays,
ete. do.

Since Sail permits one to declare almost any
r e s e r v e d w o r d t o b e a n i d e n t i f i e r for
variables, procedures , e tc . (see about
restr ict ions on identifiers, page 129,
s y n o n y m s .are used to keep the effect of the
reserved word available. For example,

LET BEG . BEGIN;
PROCEDURE BEGIN;

BEG
.

END;

i OK THEN BEGIN;

CLEANUP DECLARATIONS
The CLEANUP declaration requires a list of
procedure names fo l lowing the “CLEANUP”
token. Each procedure speci f ied must be
SIMPLE and have no formal parameters. The
specified procedures will be called at the exit
of the b lock that the CLEANUP declarat ion
occurs in. They will be called in the order of
their appearance on the list, and before any of
the var iab les of the b lock are dea l located.
NOTE: If the block is part of a p r o c e s s (s e e
a b o u t p r o c e s s e s , p a g e 1 0 4) t h a t i s b e i n g
terminated then the cleanup procedures will be
called before the terminate is completed.

.

will return a string from an input operation with Cleanup procedures a r e n o r m a l l y u s e d i n
every call. However, on the first call, it will do connection with processes to “cleanup” a block
some initialization of the I/O channel because by terminating the processes dependent on that

10

SAIL_

block (it is an error to leave active a process
that depends on an exited block).

REQUIREMENTS
The user may, using the REQUIRE construct,
specify to the compiler conditions which are
r e q u i r e d t o b e t r u e o f t h e e x e c u t i o n - t i m e
environment of his programs. All requirements
are legal at e i ther dec larat ion or s ta tement
level. T h e r e q u i r e m e n t s f a l l i n t o t h r e e
classifications, described as follows:

Group 1 -- Space r e q u i r e m e n t s - -
STRING-SPACE, SYSTEM,PDL, etc.

The inclusion of the specification “REQUIRE
1000 STRING-SPACE” will ensure that at least
1000 words of storage will be available for
storing (the text characters of) Strings when
the program is run. Similar provisions are made
for var ious push-down stacks used by the
execution-time routines and the compiled code.

. I f a p a r a m e t e r is specified twice, or if
separately compiled procedures are loaded (see
we 12) then the sum of all such
specifications will be used. These parameters
could also be typed to the loaded program just
before execution (see page 137), but it is often
more convenient to specify differences from
the standard sizes in the source program. Use
these specifications only if messages from the
running program indicate that the s tandard
allocations are not sufficient.

G r o u p 2 - - O t h e r f i l e s - - LOAD,MODULE,
LIBRARY, SOURCE-FILE, etc.

The inclusion of the specification REQUIRE
“PROCS 1” LOAD-MODULE, “HELIB[1,33” LIBRARY;
would inform the Loader that the file
P R O C S l.REL must be loaded and the library
HELIB.REL[1,3 J searched whenever the program
cant aining the specification is loaded. The
parameter for both features should be a string
constant of one of the above forms. The fi le
extension .REl is the only value permitted, and
is therefore assumed; the device, name, and ppn
may be speci f ied . TENEX users should note
that the LOADER restricts LOAD-MODULE and
LIBRARY file names to 6 characters in the main
name and 3 characters in the extension.

LOAD,MODULES (.REL files to be loaded) may
themselves contain requests - for other
LOADJvlODULES a n d LIBRARYs. LlBRARYs m a y

1 only contain requests for other LIBRARYs. The

ALGOL DECLARATIONS

I
L O A D E R m a y d o s t r a n g e t h i n g s w i t h f i l e s
requested twice.

Sai l automat ica l ly p laces a request for the
library SYS:LIBSAn (<SAIL>LIBSAn on TENEX)
[HLBSAn for /H c o m p i l a t i o n s) i n e a c h m a i n
program, where n is the version number of the
current Sail library of runtime routines.

T h e i n c l u s i o n o f REQUIRE “PREAMBSAI”
SOURCE-FILE will cause the compiler to save
the state of the current input file, then begin
scanning f rom PREAMB. When PREAMB is
exhausted, Sail will resume scanning the original
file on the line directly following the REQUIRE.
Commonly-used declarations, particularly
EXTERNAL declarations for libraries, are often
put in a separate file which is then REQUIREd.

Restrictions: A SOURCE-FILE request must be
f o l l o w e d b y a s e m i c o l o n (o n l y o n e p e r
REQUIREment), and must be the last text on the
line in which it appears. SOURCE-FILE
switching must not be specified from within a
DEFINE body (see page 57). SOURCE-FILE S
may be nested to a depth of about 10 levels.

The SEGMENT-NAME, SEGMENT-FILE
specifications are currently applicable only to
the SUAI “global model” users of Sai l . They
allow specification of the name of a s p e c i a l
non-sharable “HISEG”, and the name of the file
used to create this HISEG. These specifications
may, l i k e t h e s p a c e REQUIREments, b e
o v e r r i d d e n b y u s i n g t h e s y s t e m R E E N T E R
command (see page 137).

Group 3 -- other - INITIALIZATION, VERSION

Before the execution of a program, Sail runs
through an initialization routine. The user can
specify things that he wants done at

1 initialization time by declaring an outer-block
Procedure without arguments, then saying

REQUIRE procedure-name INITIALIZATION.

Require-initialization procedures are run just
before the first executable statement in the
outer block of the program. They are run in
order of ascending phase number, and within
each phase in the order the compiler saw the
REQUIRES. T h e r e a r e c u r r e n t l y t h r e e u s e r
phases, numbered 0, 1, and 2. Phase 1 is the
default if no phase is specified. WARNING: you
should not Require initialization of a procedure
which is declared inside another procedure.

11

ALGOL DECLARATIONS SAIL

REQUIRE n VERSION (n a non-zero integer) will
flag the resultant .REL file as version n. When
a program loaded from several such RELfiles is
started, the Sail allocation code will verify that
all specified versions are equal. A non-fatal
error message is generated if any disagree. As
much as will fit of the version number is also
stored in Ih(.JBVER), where .JBVER is location
‘137 .

For other requirements, check the index under
the specific condition being Required.

COMMENT: You have probably noticed that a
great deal of prior knowledge is required for
proper understanding of this section. For more
information about storage allocation, see page
137 below. The form and use of .REL files and
libraries are described in [TopHand].

2.5 Separately Compiled Procedures

W h e n a program becomes extremely large it
becomes useful to break it up into several files
which can be compiled separately. This can be
done in Sail by preparing one fi le as a m a i n
program, and one or more other files as
programs each of which contains one or more
procedures to be called by the main program.
The main program must conta in EXTERNAL
declarations f o r e a c h o f t h e p r o c e d u r e s
d e c l a r e d i n t h e o t h e r f i l e s . (EXTERNAL
declarat ions have no procedure body.) The
non-main program files must have the following
characteristics:

1)

2)

12

All procedures to be called from the
main program (or procedures in other
f i l e s) m u s t b e q u a l i f i e d w i t h t h e
INTERNAL at t r ibute when they are
declared. External procedure
declarations with headings identical to
those of the actual declarations must
appear in .all those programs which call
these procedures.

These internal procedures must be
uniquely identifiable by the first six
c h a r a c t e r s o f t h e i r i d e n t i f i e r s . I n
general, _ any two internal procedure
names (or any other Internal variables
in the same core image) with the same
first six characters will cause incorrect
linkages w h e n t h e p r o g r a m s are
loaded.

3) The reserved word ENTRY, followed by
a semi-colon, must be the first item in
t h e p r o g r a m (p r e c e d i n g e v e n t h e

’ BEGIN for its outer block). No starting
address will be issued for a program
containing an Entry Specification.
Since no starting address is present
for this file, entry to code within it .
m a y o n l y b e t o t h e p r o c e d u r e s i t
contains. The statements in the outer
block, if any, can never be executed.

4) Should you desi re your separatedly
compiled procedures to be collected
into a user library, include, a list of
their identifiers between the ENTRY
a n d t h e s e m i - c o l o n o f t h e E n t r y
Specification of the program containing

t h o s e p r o c e d u r e d e c l a r a t i o n s . T h e
format of l ibrar ies is descr ibed in
[TopHand]. The identifier(s) appearing
i n t h e e n t r y l i s t m a y b e a n y v a l i d
identifiers, but usually they will be the
names of the procedures contained in
the file. No checking is done to see if
entry identifiers are ever really
declared in the body of the program.

5) Any variables (simple or array) which
appear in the outer block of a
Separately Compiled Procedure
p r o g r a m w i l l b e g l o b a l to the
procedures in this program, but not
available to the main program (unless
they are themselves connected to the
main program by Internal /External
declarations -- see below). Non-LEAP
a r r a y s i n t h e s e o u t e r b l o c k s w i l l
always be zero when the program is
first loaded, but will never be cleared
a s o t h e r s a r e b y r e s t a r t i n g y o u r
program (see reinitialization, page 10).

Any variable, procedure or label may contain
the attribute INTERNAL or EXTERNAL in its
declaration (ITEMS may not -- items are part of
leap, page 83). The INTERNAL attribute does
not affect the storage assignment of the entity
it represents, nor does it have any effect on
the behavior of the entity (or the scope of its
i d e n t i f i e r) i n t h e f i l e w h e r e i n i t a p p e a r s .
However, its address and (the first six
characters of) its name are made available to
the loader for satisfying External requests.

1 GOT0 an external label is for wizards only.

SAIL ALGOL DECLARATIONS

No space is ever a l located for an Externa l
declaration. Instead, a list of references to
e a c h E x t e r n a l i d e n t i f i e r i s m a d e b y t h e
compiler. This list is passed to the loader along
with the first six characters of the identifier

I

name. (I f there are no re ferences then Sai l
ignores the External declaration.) When a
matching Internal name is found during loading, 3)
the loader places the associated address in
each of the instructions mentioned on the list.
No program inef f ic iency at a l l resul ts f rom -.

may be used as a push-down
pointer for ar i thmet ic va lues and
return addresses. SP is the string
stack pointer. Str ing resul ts are
returned on this stack. Arithmetic
results are returned in AC 1.

Those who wish to prov ide the i r
own UUO handlers or to increase
their core size should read the code.

E x t e r n a l / I n t e r n a l l i n k a g e s (b e l a y t h a t - -
references to External arrays are sometimes
less efficient).

There are no other known processors
will produce Sail-compatible programs.

The entity finally represented by an External
identifier is only accessible within the scope of
the External declaration.

FORTRAN PROCEDURES
F o r a p r o g r a m w r i t t e n i n e i t h e r F4.0 o r
FORTRAN-10 to run in the Sail environment,
the following restrictions must be observed:

1) It must be a SUBROUTINE or
FUNCTION, not a main program.

2) It must not execute any FORTRAN
l/O calls. The UUO structures of the
two languages are not compatible.

3) I t m u s t b e d e c l a r e d a s a Fortran
Procedure (see page 20) in the Sail
program which calls it.

T h e t y p e b i t s r e q u i r e d i n t h e a r g u m e n t
addresses for Fortran arguments are passed
correctly to these routines.

The Sail compiler will not produce a procedure
to be called from FORTRAN.

ASSEMBLY LANGUAGE PROCEDURES
The following rules should be observed:

1) The ENTRY, INTERNAL, and
EXTERNAL pseudo-ops should be
used to obtain linkages for

p r o c e d u r e names and “global”
identifiers; remember that only six
characters are u s e d f o r t h e s e
linkage names.

which

2) Accumulators F (current ly ‘12), P
(currently ‘17) and SP (‘16) should
be preserved over function calls. P

13

ALGOL STATEMENTS SAIL

S E C T I O N 3

ALGOL STATEMENTS

3.1 S y n t a x

<assignment-statement>
::- <algebraic-variable> t

<algebraic-expression>

<swap-statement>
::= ivariable> w <variable>
::= <variable> SWAP <variable>

<conditional-statement>
::= <if-statement>
::= <if-statement> ELSE <statement>

<if-statement>
::= IF <boolean-expression> THEN

<statement> .

<go-to-statement>
::= GO TO <label-identifier>
::= GOT0 <label-identifier>
:i= GO <label-identifier>

<label-identifier>
::= <identifier>

<forstaternent>
::= FOR <algebraic-variable> t <for-list>

DO <statement>
::= NEEDNEXT <for-statement>

<for-list>
::= <for-list-element>
::= <for-M> , <forJist,element>

<for,list,element>
::= +lgebraic,expression> * I
::= <algebraic-expression> STEP

-<algebraic-expression> UNTIL
<algebraic-expression>-

::= <algebraic-expression> STEP
<algebraic-expression> WHILE
<boolean-expression>

<while-statement>
::- WHILE <boolean-expression> DO

<statement>
::= NEEDNEXT <while-statement>

<do-statement>
. ::= DO <statement> UNTIL

<boolean-expression>

<case-statement>
::= <case-statement-head>

<statement-list>
<case-statement-tail>

::= <case-statement-head>
<numbered-state-list>
<case-statement-tail>

<case-statement-head> ’
::= CASE <algebraic-expression> OF BEGIN
::= CASE <algebraic-expression> OF BEGIN

<block-name>

<case-statement-tail>
::= END
::= END <block-name>

<statement-list>
::= <statement>
::= <statement-list> ; <statement>

<numbered-state-list>

I

::- [<integer-constant> J <statement>
: : = [<integer-constant>]

<numbered-state-list>
::- <numbered-state-list> ;

[4nteger,constant> J <statement>

<return-statement>
::= RETURN
::= RETURN (<expression>)

<done-statement>
::= DONE
::= DONE <block-name>

<next-statement>
::= NEXT
::- NEXT <block-name>

SAIL- ALGOL’ STATEMENTS

<continue-statement>
::= CONTINUE
::= CONTINUE <block-name>

<procedure-statement>
::= <procedure-call>

<procedure-call>
‘::= <procedure-identifier>
::= <procedure-identifier> (

<actual-parameter-list>)

<actual-parameter-list>
::= <actual-parameter>
::= <actual-parameter-list> ,

<actual-parameter>

.

<actual-parameter>
::= <expression>
::= <array-identifier>
::= <procedure-identifier>

<safety-statement>
::= NOW-SAFE <id-list>

- ::= N O W - U N S A F E <id-list>

3.2 Semant its

ASSIGNMENT STATEMENTS
The assignment statement causes the value
represented by an expression to be assigned to
t h e v a r i a b l e a p p e a r i n g t o t h e l e f t o f t h e
assignment symbol. You will see later (page
25) that one value may be assigned to two or
more variables through the use of two or more
assignment symbols. The operat ion of the
assignment statement proceeds in the following
order:

a) The subscript expressions of the
left part variable (if any - Sail
defines “variable” to include both
array elements and simple variables)
are evaluated from left to right (see
Expression Evaluation Rules, page
25).

b) The expression is evaluated.

c) T h e v a l u e o f t h e e x p r e s s i o n i s
assigned to the left part variable,
with subscript expressions, if any,
having values as determined in step
a.

This ordering of, operations may usually be
disregarded. However i t becomes important .
when express ion ass ignments (page 25) or
function calls with reference parameters appear
anywhere in the statement. For example, in the
statements:

K+3;
A[K]+3+(K+l);

A[31 will receive the value 4 using the above
algorithm. A[1 J will not change.

Any a lgebra ic expression (REAL, INTEGER
(BOOLEAN), or STRING) may be assigned to any
variable of algebraic type. The resultant type
wi l l be that of the le f t par t var iable . The
conversion rules for assignments involving
mixed types are identical to the conversion
rules for combining mixed types in algebraic
expressions (see page 23).

SWAP ASSIGNMENT
The w operator causes the value of the variable
on the left hand side to be exchanged with the
value of the variable on the right hand side.
Ar i thmet ic (REALtiINTEGER) type conversions
are made, if necessary; a n y o t h e r t y p e
conversions are invalid. Note that the 6
o p e r a t o r m a y n o t b e u s e d i n a s s i g n m e n t
expressions.

CONDITIONAL STATEMENTS
These statements provide a means whereby the
e x e c u t i o n o f a s t a t e m e n t , o r a s e r i e s o f
statements, is dependent on the logical value
produced by a Boolean expression.

A Boolean expression is an algebraic expression
whose use implies that it is to be tested as a
logical (truth) value. If the value of the
expression is 0 or NULL then the expression is
a FALSE boolean expression, otherwise it is
TRUE. See about type conversion, page 23.

IF STATEMENT - The statement following the
operator THEN (the “THEN part”) is executed if
the logical value of the Boolean expression is
TRUE; otherwise, that statement is ignored.

15

ALGOL STATEMENTS SAIL

IF . . . E L S E S T A T E M E N T - I f the Boolean
expression is true, the “THEN part” is executed
and the statement following the operator ELSE
(the “ELSE part”) is ignored. If the Boolean
e x p r e s s i o n i s F A L S E , t h e “ E L S E p a r t ” i s
executed and the “THEN part” is ignored.

AMBIGUITY IN CONDITIONAL STATEMENTS
The syntax g i v e n h e r e for conditional
statements does not fully explain the
correspondences between THEN-ELSE pairs
when conditional statements are nested. An
ELSE will be understood to match the
immediately preceding unmatched THEN.
Example:

COMMENT DECIDE WHETHER TO GO TO WORK;

IF -WEEKEND THEN
IF GIANTS-ON-TV THEN BEGIN

PHONE-EXCUSE (“GRANDMOTHER DIED”);
ENJOY (GAME);
SUFFER (CONSCIENCE-PANGS)

END
ELSE iF REALLY-SICK THEN BEGIN

PHONE-EXCUSE (“REALLY SICK”);
ENJOY (0);
SUFFER (AGONY)

END
ELSE GO TO WORK;

GO TO STATEMENTS
Ea5h of the three forms of the Go To statement
(GO, GOTO, GO TO) means the same thing -- an
unconditional transfer is to be made to the
“target” s t a t e m e n t l a b e l e d b y t h e l a b e l
identifier. The following rules pertain to labels:

1) All label identifiers
must be declared.

used in a program

2) The declaration of a label must be local
to the block immediately surrounding the
statement i t ident i f ies (see except ion
below). Note that compound statements
(BEGIN-END pairs c o n t a i n i n g n o
declarations) are not blocks. Therefore
the block

BEGIN “B 1”
INTEGER I, J; LABEL Ll;

IF BE3 THEN BEGIN “C 1”
*..
Ll: . . .

END “C 1 I’;
. . .
GO TO Ll

END “B I”

is legal.

3) Rule 2 can be violated if the inner
block(s) have no array declarations. E.g.:

Legal

BEGIN “B 1”
INTEGER I, J;
LABEL L I i

lllegd

BEGIN “B 1”
INTEGER I, Ji
LABEL L 1 i

.”

BEGIN “BZ” **-
REAL X;

BEGIN “BZ”
REAL ARRAY X [1: lo];

.
t 1 : . . . L I : . . .
I.. . . .
END “B2”; END “82”;

GO TO LI; GO TO Ll;
END “Bl” END “Bl”

4) N o G o TO s t a t e m e n t m a y s p e c i f y a
t r a n s f e r i n t o a FOREACH s t a t e m e n t
(FOREACH statements are part of LEAP --
page 831, or into complicated For loops
(those with For Lists or which contain a
NEXT statement).

Labels will seldom be needed for debugging
purposes. The block name feature (see page
140) and the listing feature which associates
with each source line the octal address of its
corresponding ob ject code (see page 134)
should provide enough informat ion to f ind
things easily.

Many program loops coded with labels can be
alternatively expressed as For or While loops,
augmented by DONE, NEXT, and CONTINUE
statements . This of ten resul ts in a source
program whose organization is somewhat more
transparent, and an object program which is
more efficient.

16

SAIL ALGOL STATEMENTS

FOR STATEMENTS
For, Do and While statements provide methods
for forming loops in a program. They allow the
repet i t ive execut ion of a s ta tement zero or
more times. These statements will be described
b y m e a n s o f S a i l p r o g r a m s w h i c h a r e
functionally equivalent but which demonstrate
better the actual order of processing. Refer to
these equations for any questions you might
have about what gets evaluated when, and how
many times each part is evaluated. .

Let VBL be any algebraic variable, AEl, . . . ,
AE8 any algebraic expressions, BE a Boolean
expression, TEMP a temporary location, S a
statement. Then the following Sail statements
are 8quivalent.

Using For Statements:

FOR VBL c AE 1, AE2, AE3 STEP
AE4 UNTIL AE5, AE6 STEP AE7 WHILE
BE, AE8 DO S;

Equivalent formulation without For Statements:

VBLcAE 1 i
S;
VBLcAE2;
S;

VBLcAE3; Comment STEP-UNTIL loop;
LOOP1 : IF (VBL-AE5) $ SIGN(AE4) d 0 THEN

BEGIN
S;
VBLtVBL+AE4;
GO TO LOOP1

END;

VBLeAE6; Comment STEP-WHILE loop;
LOOP2: IF BE THEN BEGIN

:BLcVBL+AE7;
GO TO LOOP2

END;

I
VBLtAE8;
S;

If AE4 (AE7) is an unsubscripted variable then
changing its value within the loop will cause the
new value to be used for the next iteration. If
A E 4 (AE7) is a c o n s t a n t o r a n e x p r e s s i o n
requiring-evaluation of some operator then the

value used for the step element will remain
constant throughout the execution of the For
Statement. If AE5 is an expression then it will
be evaluated before each iteration, so watch
this possible source of inefficiency.

Now consider the For Statement:

FOR VBLcAEl STEP CONST UNTIL AE2 DO S;

where const is a positive constant.
compiler will simplify this case to:

The

VBLtAE 1 i
LOOPG: IF VBL 5 AE2 THEN BEGIN

S;
VBLcVBL+CONST;
GO TO LOOP3

END;

If CONST is negative then the line at LOOP3
would be:

LOOP3: IF VBL L AE2 THEN BEGIN

The value’of VBl when execution of the loop is
terminated, whether it be by exhaustion of the
For list or by execution of a DONE, NEXT or GO
TO statement (see page 18 , page 19 , page
16), is the value last assigned to it using the
algorithm above. This value is therefore always
well-defined.

T h e s t a t e m e n t S m a y c o n t a i n a s s i g n m e n t
statements or procedure calls which change the
value of VBL. Such a statement behaves the
same way it would if inS8rted at the
corresponding point in the equivalent loop
described above.

WHILE STATEMENT
The statement:

WHILE BE DO S;

is equivalent to the statements:

* LOOP: IF BE THEN BEGIN
S;
GO TO LOOP

END;

17

ALGOL STATEMENTS SAIL

DO STATEMENT
The statement:

DO S UNTIL BE;

is equivalent to the sequence:

LOOP: s;
IF -BE THEN GO TO LOOP;

CASE STATEMENTS
The statement:

CASE AE OF BEGIN SO; Sl; S2 . . . Sn END

is functionally equivalent to the statements:

TEMPcAE;
IF TEMP<O THEN ERROR

ELSE IF TEMP I 0 THEN SO
ELSE IF TEMP = 1 THEN S1
ELSE IF TEMP l 2 THEN S2

ELSE IF TEMP l n THEN Sn
ELSE ERROR;

For appl icat ions of this type the CASE
statement form wi l l g ive s igni f icant ly more
efficient code than the equivalent If statements.
Notice that dummy statements may be inserted
for those cases which will not occur or for
which no entries are necessary. For example,

CASE AE OF BEGIN SO; ; i S3; i ; S6; END.

provides for no actions when AE is 1, 2, 4, 5, or
7. When AE is 0, 3, or 6 the corresponding
statement will be executed. However, slightly
more efficient code may be generated with a
second type of Case statement that numbers
each of its statement with [n] where n is an
integer constant. The above example using this.
type of Case statement is then:

CASE AE OF BEGIN [3] S3; (01 SO; (61 S6 END;

All the statements must be numbered, and the
numbers must a l l be non-negat ive in teger
constant expressions, although they may be in
any order.

I

Multiple -case numbers may precede each
statement; the statement is executed for any
one of the numbers spec i f ied . The following
two CASE statements are equivalent:

I CASE AE OF BEGIN [4] [I] S4 1 i [2] [3] S23 END;
CASE AE OF BEGIN [1] S4 1 i [2 J S23;

(31 S23; [4] S41 END;

Block names (i.e. any string constant) may be
used after the BEGIN and END of a Case
statement with the same effect as block names
on blocks or compound statements. (See about
block names on page 1).

RETURN STATEMENT
This statement is invalid if it appears outside a
procedure declaration. It provides for an early
r e t u r n f r o m a P r o c e d u r e e x e c u t i o n t o t h e
statement calling the Procedure. If no return
statement is 8X8CUt8d then the Procedure will
return after the last statement representing
the procedure body is executed (see page 7).

An untyped Procedure (see page 19) may not
return a value. The return statement for this
kind of Procedure consists merely of the word
RETURN. If an argument is given then it will
cause the compiler to issue an error message.

A typed Procedure (see page 28) must return
a value as it executes a return statement. If no
argument is present an error message will be
given. If the Procedure has an algebraic type
then any algebraic expression may be returned
as its value; type conversion will be performed
in a manner described on page 23.

If no RETURN statement is executed in a typed
Procedure then the value returned is undefined.

DONE STATEMENT
The statement containing only the word DONE
may be used to terminate the execution of a
FOR, WHILE, or DO (also FOREACH - see page
92) loop explicitly. I ts operat ion can most
easily be seen by means of an example. The
statement

FOR Icl STEP 1 UNTIL n DO BEGIN
S;

IF BE THEN DONE;
. . .

END

is equivalent to the staltement

18 ’

SAIL

I FOR ICI STEP 1 UNTIL n DO BEGIN

IF BE THEN GO TO EXIT;
. . .

END;
EXIT:

In either case the value of I is well-defined
after the statement has been executed (see
page 17).

The DONE statement will only cause an escape
from the innermost loop in which it appears,
unless a block name follows “DONE”. The block
name must be the name of a block or compound
statement (a “Loop Block”) which is the object
statement of some FOR, WHILE, or DO statement
in which the current one is nested. The effect
is to terminate all loops out to (and including)
the Loop Block, continuing with the statement
fol!owing this outermost loop. For example:

WHILE TRUE DO BEGIN “81”
. . .
IF OK THEN DO BEGIN “B2”

. . .
FOR Icl STEP 1 UNTIL K DO

IF A[I)=FLAGWORD THEN DONE “Bl”;

END “B2” UNTIL COWS-COME-HOME;
. . .
END “81”;

Here the block named “Bl” is the “loop block”.

NEXT STATEMENT
A Next statement is valid only in a For
Statement or a While Statement (or Foreach -
see page 92). P r o c e s s i n g o f t h e l o o p
statement is temporarily suspended. When the
NEXT statement appears in a For loop, the next
value i s o b t a i n e d f r o m t h e F o r L i s t a n d
a s s i g n e d t o t h e c o n t r o l l e d v a r i a b l e . The
termination test is then made. If the
termination condition is satisfied then control is
passed to the s ta tement fo l lowing the For
Statement. If not, control is returned to the
inner statement following the NEXT statement.
In While and Do loops, the termination condition
is tested. If it is satisfied, execution of the loop
terminates. - O t h e r w i s e i t r e s u m e s a t t h e
statement within the loop following the NEXT
statement.

ALGOL STATEMENTS

U n l e s s a b l o c k n a m e f o l l o w s N E X T , t h e
innermost loop containing the NEXT statement is
used as the “Loop Block” (see page 18). The
terminat ing condi t ion for the loop b lock is
checked. If the condition is met then all inner
loops are terminated (in DONE fashion) as well.
If continuation is indicated then no inner-loop
FOR-variable or WHILE-condition will have been
affected by the NEXT code.

The reserved word NEEDNEXT must precede
FOR or WHILE in the “Loop Block”, and must not
a p p e a r b e t w e e n t h i s b l o c k a n d t h e N E X T
statement. Example:

NEEDNEXT WHILE l EOF DO BEGIN
SclNPUT(1,l I;
NEXT;

- Comment check EOF and twminrtr if TRUE;
TclNPUT(1,3);

PROCESS,INPUT(S,T);
END;

CONTINUE STATEMENT
The Continue statement is valid in only those
contexts valid for the DONE statement (see
page 18); the “Loop Block” is determined in the
same way (i.e., implicitly or by specifying a
block name). All loops out to the Loop Block
are terminated as if DONE had been requested.
Control is transferred to a point inside the loop
c o n t a i n i n g t h e Loop B l o c k , b u t a f t e r a l l
statements in the loop. Example:

FOR Icl STEP 1 UNTIL N DO BEGIN
..*
CONTINUE;

END

is semantically equivalent to:

FOR It 1 STEP 1 UNTIL N DO BEGIN
LABEL CONT;

GO TO CONT;

CONTI”
END

PROCEDURE STATEMENTS
A Procedure statement is used to invoke the
execution of a Procedure (see page 7). After
execution of the Procedure, control returns to
t h e s t a t e m e n t i m m e d i a t e l y f o l l o w i n g the

19

ALGOL STATEMENTS

Procedure statement. Sail does allow you to
use typed Procedures as procedure statements.
T h e v a l u e r e t u r n e d f r o m t h e P r o c e d u r e i s
simply discarded.

The actual parameters supplied to a Procedure
must match the formal parameters described in
the procedure declaration, modulo Sail type
conversion. Thus one may supply an integer
expression to a real formal, and type
conversion will be performed as on page 23.

If an actual parameter is passed by VALUE then
only the value of the expression is given to the
Procedure. Th is va lue may be changed or
examined by the Procedure, but this will in no
w a y a f f e c t a n y o f t h e v a r i a b l e s u s e d . t o
evaluate the actual parameters. Any algebraic
expression may be passed by value. * Neither
Arrays nor Procedures may be passed by value
(use ARRBLT, page 51, to copy arrays). See
the default declarations for parameters in page
9.

If an actual parameter is passed by REFERENCE
then its address is passed to the Procedure.
Al l accesses to the va lue of the parameter
made by the Procedure are made indi rect ly
through this address. Therefore any change
the Procedure makes in a reference parameter
will change the value of the variable which was
used as an actual parameter. This is sometimes
useful. However, if it is not intended, use of
this feature can also be somewhat confusing as
well as moderately inefficient. Reference
parameters should be used only where needed.

Variables, constants, Procedures, Arrays, and
most expressions may be passed by reference.
No String expressions (or String constants) may
be reference parameters.

If an expression is passed by reference then
its value is first placed in a temporary location;
a constant passed by reference is stored in a
unique location. The address of this location is
p a s s e d t o t h e P r o c e d u r e . Therefore, any
values changed by the Procedure via reference
parameters of this form will be inaccessible to
the user after the Procedure call. If the called
program is an assembly language routine which
saves the parameter address, it is dangerous to
pass expressions to it, since this address will
be used by the compiler for other temporary
purposes. A warning message will be printed
when expressions are called by reference.

2 0

SAIL

The type of each actual parameter passed by
reference must match that of its corresponding
formal parameter, modulo Sail type conversion.
The exception is reference string formals, which
must have st r ing var iables (or s t r ing array
elements) passed to them. If an algebraic type
mismatch occurs the compiler will create a
temporary variable containing the converted
value and pass the address of this temporary
as the parameter, and a warning message will
be printed. An exception is made for Fortran
calls (see page 20).

PROCEDURES AS ACTUAL PARAMETERS
If an actual parameter to a Procedure PC is the
name of a Procedure PR with no arguments
then one of three things might happen:

i)

2)

3)

If a

If the corresponding f o r m a l
p a r a m e t e r r e q u i r e s a v a l u e o f a
type matching that of PR (in the
loose sense given above in page
20), t h e P r o c e d u r e i s e v a l u a t e d
and its value is sent to the
Procedure PC.

If the formal parameter of PC
requires a reference Procedure of
identical type, the address of PR is
passed to PC as the actual
parameter.

If the formal parameter requires a
reference variable, the Procedure is
evaluated, its result stored, and its
address passed (as with expressions
in the previous paragraph) as the
parameter.

P r o c e d u r e n a m e f o l l o w e d b y a c t u a l
parameters appears as an actual parameter it is
evaluated (see functions, page 28). Then if
the corresponding formal parameter requires a
value, the result of this evaluation is passed as
the actual parameter. If the formal parameter
requires a reference to a value, it is called as a
reference expression.

FORTRAN PROCEDURES
I f t h e P r o c e d u r e b e i n g c a l l e d i s a Fortran
Procedure, all actual parameters must be of
type INTEGER (BOOLEAN) or REAL. All such
parameters are passed by re ference, s ince
Fortran will only accept that kind of call. For
convenience, any constant or expression used
as an actual parameter to a Fortran Procedure

SAIL - ALGOL ‘STA TE M E N T S

is stored in a temporary cell whose address is
g i ven as t he reference actual parameter.

It was explained in page 7 that formal
parameters need not be described for Fortran
Procedures. This allows a program to call a
Fortran Procedure wi th vary ing numbers of
arguments. No type conversion will be
performed for such parameters, of course. If
type conversion is desired, the formal
parameter declarations should be included in
the Fortran procedure declaration; Sail will use
them if they are present.

T o p a s s a n A r r a y t o Fortran, m e n t i o n t h e
a d d r e s s o f i t s f i r s t e l e m e n t (e . g . A[O], o r
W, W

NOW-SAFE and NOWJJNSAFE
The NOW-SAFE and NOW-UNSAFE statements
both take a list of Array names (names only -
no indices) following them. From a NOW-SAFE
un?il t h e e n d o f t h e p r o g r a m o r t h e n e x t
NOW-UNSAFE, the speci f ied arrays wi l l not
have bounds checking code emitted for them. If
an array has had a NOW-SAFE done on it, or
has been declared SAFE, NOW-UNSAFE will
cause bounds checking code to be emitted until
t h e .array is made safe again (if ever). Note
that NOW-SAFE and NOW-UNSAFE are compile
time statements. “IF BE THEN NOW-SAFE . ..”
will not work.

21

ALGOL EXPRESSIONS SAIL

SECTION 4

A L G O L E X P R E S S I O N S

<negated-expression>
::- * <relational-expression>
::= NOT <relational-expression>
::= <relat ional,expression>

<relational-expression>
4.1 Syntax ::- <algebraic,relationaI>

::- cleap,relational>

<expression>
::- <simple-expression>
::- <conditional-expression>
::- <assignment-expression>
::- <case-expression>

<algebraic,relationaI>
::- <bounded-expression>
::- <relational-expression>

<relational,operator>
<bounded-expression>

<conditional-expression>
::- IF <boolean-expression> THEN

<expression> ELSE <expression>

<assignment-expression>
::= <variable> + <expression>

<case-expression>
::- CASE <algebraic-expression> OF (

<expression-list>)

<expression-list>
::- <expression>
::- <expression-list> , <expression>

<simple-expression>
::- <algebraic-expression>
::- <leap-expression>

<relational-operator>
::- <

::- 2
::- #
::- LEQ
::- GEQ
::- NEQ

<bounded-expression>
::- <adding-expression>
::- <bounded-expression> MAX

<adding-expression>
::- <bounded-expression> MIN

<adding-expression>

I <boolean-expression>
::- <expression>

<adding-expression>
::- <term>
::= <adding-expression> <add-operator>

<term>

<alge braic,expression>
::- <disjunct ive,expression>
i:- <algebraic-expression> v

<disjunctive-expression>
::- <algebraic-expression> OR

<disjunctive-expression>

<disjunctive-expression>
::- <negated-expression>
::- <disjunctive-expression> A

<negated-expression>
::- <disjunctive-expression> AND

<negated-expression>

2 2

.

<adding-operator>
::- +
::= -
::- LAND
::- LOR
::- EQV
::- XOR

<term>
::- <factor>
::- <term> <mult,operator> <factor>

SAIL- ALGOL’EXPRESSIONS

4.2 Type Conversion

Sail automatically converts between the data
types Integer, Real, String and Boolean. The
following table il lustrates by description and
example these conversions. T h e d a t a t y p e
b o o l e a n i s i d e n t i c a l t o i n t e g e r u n d e r t h e
mapping TRUE+0 and FALSE-O.

F Ifo

r I
o ,I INTEGER RERL STRING

<mult,operator>
::- *
::- /
::- %
::- LSH

I ::- ASH
::- ROT
::- MOD
::- DIV
‘:p &

<factor> 1 I 1 Left justify 1 flake a string
N I 1 and raise t o 1 of 1 character
T

i
I

I

E I

R, Iv .

I
R I
E I
A I
L I

I appropriate
1 poctrr.
1 134&l 9 34563
1 -678+6r78@2

uith the IOU
7 b i ts for i ts
ASCII code.
48 -I “6”

I
Takr groatost I
integrr. I
1.3451~2 + 134 I
-6.71el.q - 6 8 1

Convert to in-
teger, then to
string.
4.8al + “8”

::- <primary>
::- <primary> t <primary>

(Primary>
::- <algebraic-variable>
::- - <primary>
::- LNOT <primary>
::- ABS <primary>
::- <string expression>

-
[<substring,spec>

3
::- 00
::- INF
::- Qonst ant>
‘::- <function-designator>
::- LOCATION (<ioc,specifier>)
::- (<alge braic,expression>)

1 2.3~2 4 8 I 1 4.899@1 + “0”
-I I I

I The ASCII codrl Convert to in-l
S 1 for the fimt I tegrr than I
T I c h a r a c t e r o f I to real. I
R 1 string. I I
I I “0SUtl”* 4 8 1 “BSUH”~ 4.8al 1
N I NULL + 8 I NULL + 8 I

<string-expression>
::- <algebraic-expression>

C-l 1’ I

NOTES: The NULL string is converted to 0, but 0
is converted to the one character string with
the ASCII code of 0. If an integer requires more
than 27 bits of precision (2t27 - 1 3 4 2 1 7 7 2 8)
then some low order significance will be lost in
the conversion to real; otherwise, conversion to
real and then back to integer will result in the
same integer value. I f a r e a l n u m b e r h a s
magnitude greater than 2 7 3 5 - 2t8

I

(-34359738112) then conversion to integer will
p r o d u c e a n i n v a l i d r e s u l t . UUOFIX d o e s n o
error checking for this case; KIFIX and FIXR will
set Overflow and Trap 1.

<s.ubstring,spec>
::- <algebraic-expression> TO

<algebraic-expression>
::- <algebraic-expression> FOR

<algebraic-expression>

<function-designator>
::- <procedure-call>

<loc,specif ier>
::- <variable>
::- <array-identifier>
::- cprocedureidentifier>
::- <label-identifier>

The default instruction compiled for a real to
integer conversion is a UUO which computes
FLOOR lx), the greatest integer function, T h i s
can be changed with the /A switch (page 134)
to one of several other instructions. For real
t o i n t e g e r c o n v e r s i o n t h e c h o i c e s are
UUOFIX(opcode 003), KIFIX(122) and FIXR(126);.

2 3

<algebraic-variable>
::- <variable>

ALGOL EXPRESSIONS

I t1

F
U
UI
rY
ir
1
U

F”

t”;
rr

he effect of each is shown in the following
able.

rea I U U O F I X K I F I X F I X R
1.4 1 1 1
1.5 1 1
1.6 1 1 :

-1.4 -2 -1 -1
-1.5 -2 -1
-1.6 -2 -1 1:

MIFIX is the default. In mathematical terms,
IUOFIX (x)=FLOOR (xl-[x J w h e r e [x] i s t h e
raditional notation for the greatest integer less
han or equal to x. This UUO requires execution
f 18.125 instructions (32 memory references)
n t h e a v e r a g e . M a n y FORTRANs u s e t h e
Jnction implemented bY KIFIX;
IFIX (x)=SIGN (x)*FLOOR (ABS (x)). Many
,LGOLs use F IXR; FIXR (x)=FLOOR (x+0.5). N o t e
Tat FIXR (-1.5) is not equal to -FIXR (1.5).

or integer to real conversion the choices are
IUOFLOAT(002) and FLTR(127) . FLTR rounds
rhile UUOFLOAT (the default) truncates. It only
rakes a difference when the magnitude of the
lteger b e i n g c o n v e r t e d i s g r e a t e r t h a n
34217728. In such cases it is always true that
IUOFLOAT (i)<i a n d F L T R (i)zi. UUOFLOAT
rerely t runcates af ter normal izat ion, whi le
LTR adds to.5 Isb and then truncates. Most
sers will never see the difference. UUOFLOAT
akes 18.625 instruct ions (32 ’ m e m o r y
sferences) on the average.

‘or integer to rea l convers ion involv ing a
HORT quant i ty , FSC ac,233 is used. At SUAI
eal to integer conversion involving a S H O R T
uantity uses KAFIX ac,233000; as this manual
rent to press KAFIX was s imulated by the
ystem and was very expensive.]

T h e b i n a r y a r i t h m e t i c , l o g i c a l , a n d S t r i n g
operations which follow will accept
combinations of arguments of any algebraic
t y p e s . T h e t y p e o f t h e r e s u l t o f s u c h a n
operation is sometimes dependent on the type
of i ts arguments and somet imes f ixed. An
argument may be conver ted to a d i f ferent
a l g e b r a i c t y p e b e f o r e t h e o p e r a t i o n i s
performed. The following table describes the
results of the arithmetic and logical operations
given various combinations of Real and Integer
inputs. ARGl and ARG2 represent the types of
t h e a c t u a l a r g u m e n t s . ARGl’ a n d A R G 2 ’
represent the types of the arguments after any
necessary conversions have been made.

2 4

SAIL

Beware: automatic type conversion can be a
curse as well as a blessing. S t u d y t h e
conversion rules carefully; note that Sail has
three division operators, ‘x, DIV, and /.

O P E R A T I O N ARGl A R G P ARGI' ARGP' R E S U L T

+- INT INT INT INT INTJ:
*7x REAL INT R E A L R E A L R E A L
MAX MIN INT REAL REAL REAL REAL

REAL REAL REAL REAL REAL

LAND LOR INT INT INT INT INT
EQVXOR REAL INT REAL INT REAL

INT REAL INT R E A L I N T
REAL REAL REAL REAL REAL

LSH ROT INT INT INT INT INT

I-ASH REAL INT REAL INT REAL
INT REAL INT INT INT
REAL REAL REAL INT REAL

/ INT INT R E A L R E A L R E A L
REAL INT R E A L R E A L R E A L
INT REAL REAL REAL REAL

REAL REAL REAL REAL REAL

MOD DIV INT INT INT INT INT
REAL INT INT INT INT
INT REAL INT INT INT
REAL REAL INT INT INT

I

* For the operator t, ARG2’ and RESULT are
R E A L u n l e s s ARC2 i s a p o s i t i v e i n t e g e r
constant.

4.3 Semant its

CONDITIONAL EXPRESSIONS
A conditional expression returns one of two
possible values depending on the logical truth
value of the Boolean expression. If the Boolean
e x p r e s s i o n (B E) i s t r u e , t h e v a l u e o f t h e
condi t ional expression is the va lue of the
expression following the delimiter THEN. If BE
is fa lse , the other va lue is used. I f b o t h
e x p r e s s i o n s a r e o f a n a l g e b r a i c t y p e , t h e
p r e c i s e t y p e o f t h e e n t i r e c o n d i t i o n a l
e x p r e s s i o n i s t h a t o f t h e “ T H E N p a r t ” . I n
particular, the “ELSE part” will be converted to
t h e t y p e o f t h e “ T H E N p a r t ” b e f o r e b e i n g
r e t u r n e d a s t h e v a l u e o f t h e c o n d i t i o n a l
expression. Reread and understand the last
sentence.

SAIL ALGOL ‘EXPRESSIONS

Unlike the nested If statement problem, there
can be no ambiguity for conditional expressions,
s ince there is an ELSE part in every such
expression. Example:

FOURTHDOWN (YARDSTOGO,YARDLINE,
IF YARDLINE < 70 THEN PUNT ELSE
IF YARDLINE < 90 THEN FIELDGOAL ELSE
RUNFORIT)

ASSIGNMENT EXPESSIONS
The somewhat weird syntax for an assignment
expression (i t is equivalent to that for an
assignment statement) is nonetheless accurate:
the two function identically as far as the new
value of the left part variable is concerned.
The difference is that the value of this left part
var iab le *is also retained as the value of the
entire expression. Assuming that the
assignment itself is legal (following the rules
g i v e n i n p a g e 1 5 a b o v e) , t h e t y p e o f t h e
expression is that o f the le f t par t var iab le .
T h i s v a r i a b l e m a y n o w p a r t i c i p a t e i n a n y
surrounding expressions as if it had been given
its new value in a separate statement on the
previous line. Only the + ;feerator is valid in
assignment expressions. 4+ operator is
valid only at statement level. Example:

IF (KcK+ 1) < 30 THEN Kc0 ELSE KcK+ 1;_

CASE EXPRESSIONS
The expression

CASE AE OF (EO, El, E2, . . . , En)

is equivalent to:

IF AE=O THEN EO
ELSE IF’ AE= 1 THEN El
ELSE IF AE-2 THEN E2

. . .
ELSE IF AE-n THEN En
ELSE ERROR

The type of the entire expression is therefore
that of EO. If any of the expressions El . . . En
cannot be fit into this mold an error message is
issued by the compiler. Case expressions differ
from Case statements in that one may not use
the [n] construct to number the expressions.
Example:

OUT (TTY, CASE ERRNO OF (“BAD DIRECTORY”,
“IMPROPER DATA MODE”,
“UNKNOWN I/O ERROR”,

“COMPUTER IN BAD MOOD”));

SIMPLE EXPRESSIONS
Simple expressions are simple only in that they
are not conditional, c a s e , o r assignmerit
expressions. There are in fact some exciting
complexities to be discussed with respect to
simple expressions.

PRECEDENCE OF ALGEBRAIC OPERATORS
The binary operators in Sail generally follow
“normal” precedence rules. That is,
exponentiations are performed before
multiplications or divisions, which in turn are
performed before additions and subtractions,
etc. The bounding operators MAX and MIN are
performed after these operations. The logical
c o n n e c t i v e s A and v , when they occur , are
p e r f o r m e d l a s t (A b e f o r e v). T h e o r d e r o f
operation c a n b e c h a n g e d b y i n c l u d i n g
parentheses at appropriate points.

In an expression where several operators of
the same precedence occur at the same level,
the operations are performed from left to right.
See page 26 for special .evaluation rules for
logical connect ives.

TABLE OF PRECEDENCE

I * / 2 & MOD DIV LSH ROT ASH
+ - o D LAND LOR
MAX MIN
- # < I > 2 L E O GEQ NEQ

I

A AND
v OR

EXPRESSION EVALUATION RULES
Sail does not evaluate expressions in a strictly
left-to-right fashion. If we are not constrained
to a left-to-right evaluation, (as is ALGOL 60),
we can in some cases produce considerably
better code than a strict left-to-right scheme
could achieve. Intuitively, the essential features
(and pitfalls) of this evaluation rule can be
illustrated by a simple example:

b c 2.6 ;
c c b + (b c b/2);

The second statement is executed as follows:

2 5

ALGOL EXPRESSIONS SAIL

divide b by 2 and assign this value (1.3) to b.
Add this value to b and assign the sum to c.
T h u s c g e t s 2 . 6 . If the expressions were
evaluated in a strictly left-to-right manner, c
would get 2.6 + 1.3.

The eva luat ion scheme can be s ta ted qui te
simply: code is generated for the operation
represented by a BNF product ion when the
reduction of that BNF production takes place.
That is, b + (b + b/2) isn’t reduced until after
(b t b/2) is reduced, so the smaller expression
gets done first.

“v” (OR)
If an algebraic expression has as its major
c o n n e c t i v e t h e l o g i c a l c o n n e c t i v e ‘IV”, t h e
e x p r e s s i o n h a s t h e l o g i c a l v a l u e T R U E
(ar i thmet ic va lue some non-zero in teger) i f
e i ther o f i t s conjuncts (the expressions
surrounding the “v”) is true; FALSE otherwise.
The reserved word OR is equiva lent to the
symbol “v”. AvB does NOT produce the bit-
wise Or of A and B if they are algebraic
expressions. Truth values combined by numeric
operators will in general be meaningless (use
the operators LOR and LAND for bit operations).

The user should be warned that in an
expression containing logical connectives, only
enough of the expression is evaluated (from left
to right) to uniquely determine its truth value.
Thus in the expression

(J<3 v (KcK+ 1) > 01,

K will not be incremented if J is less than 3
since the entire expression is already known to
be true. Conversely in the expression

(X LO A SQRT(X)>P)

“-” (NOT)
The unary Boolean operator 3 applied to an
argument BE (a re lat ional expression, see
Syntax) has the value TRUE if BE is false, and
FALSE if BE is true. Notice that -A is not the
bitwise complement of A, if A is an algebraic
va lue . I f used as an a lgebra ic va lue , -A is
simply 0 if A#0 and some non-zero In teger .
otherwise. The reserved word NOT is
equivalent to “q”.

“<>:++” (RELATIONS)
I f any of the b inary re lat ional operators is
encountered, code is produced to convert any
String arguments to Integer numbers. Then
t y p e c o n v e r s i o n is done as i t is for the +
operat ions (see page 23) . The va lues thus
o b t a i n e d a r e c o m p a r e d f o r t h e i n d i c a t e d
condition. A Boolean value TRUE or FALSE is
returned as the value of the expression. Of
course, if this expression is used in subsequent
arithmetic operations, a conversion to integer is
per formed to obta in an integer va lue . The
reserved words LEQ, GEQ, NEQ are equivalent
to ‘Y’, ‘Y, “#” respectively.

The syntax El RELOPl E2 RELOP2 E3 where El,
E 2 , a n d E 3 a r e e x p r e s s i o n s a n d R E L O P l ,
RELOP2 are relational operators, is specially
interpreted as (El RELOPl (TtE2)) A (T RELOP2
E3) . The compi ler can sornet imes produce
better code when the special syntax is used.
Thus a bounds check may be written IF L<I<U
THEN RELOPl and RELOP2 may be any
relational operators, and need not be in
transitive order. The following are equivalent:

IF A < X > B THEN se. and
IF X > (A MAX B) THEN . . .

there is never any danger of a t tempt ing to
extract the square root of a negative X, since
the fa i lure of the f i rst test test i f ies to the
fa ls i ty of the .entire express ion - - the SQRT
routine is not even called in this case.

“A” (AND)
If a disjunctive expression has as its major
connect ive the log ica l connect ive “A ”, the
expression has the logical value TRUE if both of
its disjuncts ate TRUE; FALSE otherwise. Again,
if the first disjunct is FALSE a logical vatue of
FALSE is obtained for the entire expression
without further evaluation. The reserved word
AND is equivalent to “A” .

MAX MIN
A M A X B (w h e r e A a n d B a r e a p p r o p r i a t e
expressions -- see the Syntax) has the value of
the larger of A and B (in the algebraic sense).
Type convers ions are per formed as i f the
operator were ‘+‘. ‘0 MAX X MIN 10’ is X if
OSXSlO, 0 if Xx0, 10 if X>lO.

I, +-I’ (ADDITION AND SUBTRACTION)
The + and - operators will do integer addition
(subtraction) if both arguments are integers (or
converted to integers from strings); otherwise,
rounded Real addition or subtraction, after
necessary conversions, is done.

26

SAIL _ ALGOL EXPRESSIONS

LAND LOR XOR EQV LNOT
LAND, LOR, XOR, and EQV carry out bit-wise
A n d , O r , Exclusive Or , and Equivalence
operations on their arguments. No type
conversions are done for these functions. The
logical connect ives A and v do not have this
effect -- they simply cause tests and jumps to
be compiled. The type of the result is that of
the first operand. This allows expressions of
the form X LAND ‘777777777, where X is Real,
if they are really desired.

The unary operator LNOT produces the bitwise
complement of its (algebraic) argument. No
type conversions (except strings to’ integers)
are performed on the argument. The type of
the result (meaningful or not) is the type of the
argument.

“ric/;r.” (MULTIPLICATION AND DIVISION)
The operat ion * (multiplication), like + and -,
represents Integer multiplication only if both
arguments are integers; Real otherwise. Integer
multiplication uses the IMUL machine instruction
-- no double-length result is available.

The / operator (division) always does rounded
Real division, a f ter conver t ing any In teger
arguments to Real.

T h e X (division) operator has the same type
table as +, -, a n d *. I t per forms whatever
division is appropriate.

DIV MOD
D I V a n d M O D f o r c e b o t h a r g u m e n t s t o b e
i n t e g e r s b e f o r e d i v i d i n g . X M O D Y is the
remainder after X DIV Y is performed:

A S t r i n g p r i m a r y w h i c h i s q u a l i f i e d b y a
substring specification represents a part of the
specified string. The characters of a string STR
are numbered 1 , 2 , 3 , LENGTH (STR).
ST[X FOR YJ represents the substring which is
Y characters long and begins with character X.
ST[X TO Y) r e p r e s e n t s t h e X t h t h r o u g h Y t h
characters of ST.

x MOO Y = x - (X ON Y)*Y .

ASH LSH ROT

Consider the ST[X TO Y] case. This is evaluated

LSH and ROT provide logical shift operations on
t h e i r f i r s t a r g u m e n t s . I f t h e v a l u e o f t h e
second argument is positive, a shift or rotation
of that many bits to the left is performed. If it
is negative, a right-shift or rotate is done. ASH
does an arithmetic shift. Assume that A is an
integer. If N is positive then the expression A
ASH N is equal to A * 2rN. If N is negative then
A ASH N isequal to FLOOR (A / 2t(-N)).

,SKIP,cFALSE; XTtX; YTcY;
IF VT > LENGTH (ST) THEN BEGIN

YTtLENGTH (ST); righthalf (,SKIP,)cTRUE END;
IF VT < 0 THEN C@VviENT result will be NULL;

BEGIN YTcO; righthalf (,SKIP,)tTRUE END;
IF XT e I THEN

BEGIN XT c 1; Iefthrlf (,SKIP,)cTRUE END;
IF XT > VT THEN COMMENT result will be NULL;

BEGIN XT c YT+I; kfthrlf (,SKIPJcTRUE END;
<roturn the XTth through YTth characters of ST,

tre I*o1 (CONCATENATION) LENGTH returns the number of characters in a
This operator produces a result of type String. s t r i n g (s e e p a g e 48).
I t is the Str ing wi th length the sum of the

T h e ST[X F O R Y]

lengths of its arguments, containing all the
operation is converted to the ST[X TO Y] case
before the substring operation is performed.

characters of the second string concatenated to
the end of all the characters of the first. The
operands will f irst be converted to strings if
necessary as descr ibed in page 23 above .
Numbers can b e c o n v e r t e d t o s t r i n g s
representing their external forms (and vice-
versa) through explicit calls on execution time
r o u t i n e s l i k e C V S a n d C V D (s e e p a g e 4 . 6
below). NOTE: Concatenat ion of constant
str ings wi l l be done at compi le t ime where
possible. For example, if SS is a string variable,
SS&‘12&‘15 w i l l r e s u l t i n t w o runtime
concatenations, while SS&(‘l2&‘15) will result in
one compile time concatenation and one runtime
concatenation.

“r” (EXPONENTIATION)
A factor is either a primary or a primary raised
to a power represented by another primary.
As usual, evaluation is from left to right, so that
ArBtC is eva luated as (AtB)IC. In the factor
XtY, a suitable number of multiplications and
additions is performed to produce an “exact”
answer if Y is a positive integer. Otherwise a
routine .is called to approximate
ANTILOG (Y LOG X). The result has the type of
X in the former case. It is always of type Real
in the latter.

SUBSTRINGS

2 7

ALGOL EXPRESSIONS

T h e v a r i a b l e -SKIP, c a n b e e x a m i n e d t o
determine if the substring indices were “out of
bounds”.

“00” (SPECIAL LENGTH OPERATOR)
This special primary construct is valid only
within substring brackets. It is an algebraic
va lue represent ing the length of the most
immediate string under consideration. The
r e s e r v e d w o r d I N F i s e q u i v a l e n t t o “00”.
Example:

A[oo-2 to 001 yields the last 3
characters of A.

A [3 f o r B[oo-1 for l]] uses the next to
the last character of string
B as the number of *
characters for the A
substring operation.

FUNCTION DESIGNATORS
A function designator defines a single value.
This value is produced by the execution of a
typed user Procedure or of a typed execution-
time routine (See chapters 6 and 7 for
execution-time routines). For a function
designator to be an a lgebra ic pr imary, i ts
Procedure must be declared to have an
algebraic type. Untyped Procedures may only
be called as Procedure statements (see page
19). The value obtained from a user-dof ined
P r o c e d u r e i s t h a t p r o v i d e d b y a R e t u r n

Statement within that Procedure.

The rules for supplying actual parameters in a
function designator are identical to those for
supplying parameters in a procedure statement
(see page 19).

UNARY OPERATORS
T h e u n a r y o p e r a t o r A B S i s v a l i d -only f o r
algebraic quantities. It returns the absolute
value of its argument.

-X is equivalent to (O-X). No type conversions
are performed.

1-X is the logical negation of X.

MEMORY AND LOCATION
One’s core image can be considered a giant one
dimensional array, which may be accessed with
the MEMORY construct. You had better be a
good sport, or know what you are doing.

MEMORY [4nteg.r l xprorsion,)

SAIL

One can store and retrieve from the elements
o f M E M O R Y j u s t a s w i t h a n y o t h e r a r r a y .

I
However, with MEMORY, one can control how
t h e c o m p i l e r i n t e r p r e t s t h e t y p e o f t h e
accessed element by including type declarator
reserved words after the <integer expression>.
For example:

. ..c MEMORY[X, INTEGER]
MEMORY[X, REAL] c . . .

. ..c MEMORY[X, ITEM]
COMMENT items and sets are part of Leap;

MEMORY[X, SET] t . . .
. ..e MEMORY[X, INTEGER ITEMVAR)

Note that one can not specify the contents of
memory to be an Array or a String.

LOCATION is a predeclared Sail routine that
r e t u r n s t h e i n d e x i n M E M O R Y o f t h e S a i l
construct furnished it. The following is a list of
constructs it can handle and what LOCATION will
return.

CONSTRUCT x LOCATION (x) RETURNS

variable address of the variable

1 string variable &address of word2

array name address of a word containing

I
the the address of the f i rs t
data word of the array

array element address of that element

procedure name address
entry code

of the procedure’s

labels address of the label

Simple example:

REAL X;
MEMORY [LOCATION (XI, REAL] c 2.0;
PRINT (X); COMMENT ” 2.000000 I’;
MEMORY [LOCATION <X>J c 2.0; PRINT (X);

COMMENT * .OOOOOOO@-39”, MEMORY is INTEGER
unbsr othorwiso spscified;

MEMORY [LOCATION (XI, INTEGER] c 2.0;
PRINT 00; COMMENT arma aa rbovo;

2 8

SAJL _

I SECTION 5

I ASSEMBLY LANGUAGE STATEMENTS

5.1 S y n t a x

<code-block>
::- <code-head> <code-tail>

<code-head>
::- <code-begin>
::- <code begin> <block-name>
::- <codeIhead> <declaration> ;

<code-begin>
::- START-CODE
::- QUICK-CODE

<code-t ail>
::- <instruction> END
::= <instruction> END <block-name>

_ ::- <instruction> ; <code-tail>

< i n s t r u c t i o n >
::- <addresses>
::+ copcode>
::- copcode> <addresses>

<addresses>
::- <address>
::- <ac,field> ,
::- <ac,field> , <address>

<ac,field>
::= <constant-expression>

<address>
::= <indexed-address>
::- a <indexed-address>

- -
<indexed-address>

::- <simple-address>
::- <simple-address> (<index-field>)

ASSEMBLY LANGUAGESTATEMENTS

<simple-address>
::- <ident if ier>

I

::- <static-array-name> [
<constant-subscript-list>]

::- <constant-expression>
::- <literal>

<literal>
::- [<constant-expression>]

<index-field>
::- <constant-expression>

<opcode>
::= <constant-expression>
::- <POP-lO,opcode>

5 . 2 Semant its

Within a START-CODE (QUICK-CODE) block,
statements are processed by a small and weak,
but hopefully adequate, assembly language
translator. Each “instruction” p l a c e s o n e
i n s t r u c t i o n w o r d i n t o t h e o u t p u t f i l e . A n
instruction consists of

<Iakl>:<opcodr> <ac,field>, @<simple-addr> (<index>)

or some subset thereof (see syntax) . Each
instruction must be followed by a semi-colon.

DECLARATIONS IN CODE BLOCKS
A code-block behaves like any other block with
respect to b lock s t ructure . Therefore , a l l
declarations are valid, and the names given in
these declarations will be available only to the
instructions in the code-block. All labels must
be declared as usual. Labels in code-blocks
m a y r e f e r t o i n s t r u c t i o n s w h i c h w i l l b e
executed, or to those which are not rea l ly
instructions, but data to be manipulated by
these instructions (these latter words must be
bypassed in the code by jump instructions).
The user may find it easier to declare variables
or SAFE arrays as data areas rather than using
labels and null statements. As noted below,
identifiers of simple variables are addresses of
core locations. I d e n t i f i e r s o f a r r a y s a r e
addresses of the first word of the array header
(see the appendix on array implementation).

2 9

ASSEMBLY LANGUAGE STATEMENTS *

PROTECT ACS DECLARATION

PROTECT,ACS GBC Y>, . . . , eat to;

where cat #> is an integer constant between 0
and ‘17, is a declaration. Its effect is to cause
Sail not to use the named accumulators in the
code it emits for the block in which the
declaration occurred (only A F T E R t h e
declaration). The most common use is with the
ACCESS construct (see below); if one is using
accumulators 2, 3, and 4 in a code block, then
one should declare PROTECT,ACS 2, 3, 4 if one
is going to use ACCESS. This way, the code
emitted by Sail for doing the ACCESS will not
use accumulators 2, 3, or 4. WARNING: this
does not, prevent you from clobbering such ACs
with procedure calls (your own procedures or
Sail’s). However, most Sail runtimes save their
ACs and restore them after the call.

RESTRICTION: Accumulators P (‘17), SP (‘16), F
(‘12) and 1 are used for , respect ive ly , the
system push down pointer , the s t r ing push
down pointer, the display pointer, and returning
results from typed procedures and runtimes.
More about these acs on page 31. The
protect mechanism wi l l not overr ide these
usages, so attempts to protect 1, ‘12, ‘16, or
‘17 will be futile.

OPCODES
The Opcode may be a constant provided by the
user, or one of the standard (non l/O) POP-10
operation codes, expressed symbolically. If a
constant, it should take the form of a complete
PDP-10 instruction, expressed in octal radix
(e.g. DEFINE TTYUUO = “‘51000000000”;). Any
bits appearing in fields other than the opcode
field (first 9 bits) will be OR’ed with the bi ts
supplied by other fields of instructions in which
t h i s o p c o d e a p p e a r s . I n T O P S - 1 0 S a i l t h e
MUUOs (ENTER, LOOKUP, etc.) are available. In
TENEX Sail the JSYSes are available. Within a
code-b lock opcodes supersede a l l o t h e r
objects; a variable, macro, or procedure with
the same name as an opcode will be taken for
the opcode instead.

The indirect, index, and AC fields have the same
syntax and perform the same functions as they
do in the FAIL or MACRO languages._ -

THE <simple addr> FIELD
If the <address> in an instruction is a constant
(constant expression), it is assumed to be an
immediate or data operand, and is not relocated.

3 0

I

SAIL

If the <address> is an identifier, the machine
address (relative to the start of the compilation)
is used, and will be relocated to the proper
value by the Loader.

If the <address> is an identifier which has been
declared as a formal parameter to a procedure,
addressing arithmetic will be done automatically
to get at the VALUE of the parameter. Hence if
the <address> is a formal reference parameter,
the instruction will be of the form OP AC,@ -
~(‘12) where x depends on exactly where the
parameter is in the stack. If the formal was
from a simple procedure, then ‘17 will be used
as the index register rather than ‘12. When
computing x Sail will assume that the stack
pointer has not changed since the last
procedure entry; if you use PUSH, POP, etc. in a
Simple Procedure then you must calculate x
yourself.

If a literal is used, the address of the compiled
constant will be placed in the instruction.

Any reference to Str ings wi l l resul t in the
address of the second descriptor word (byte
pointer) to be placed in the instruction (see the
appendix on st r ing implementat ion for an
explanation of string descriptors).

Accessing parameters of procedures global to
the current procedure is d i f f icu l t . ACCESS
(<expr>) may be used to return the address of
such parameters. ACCESS will in fact do all of
the computing necessary to obtain the value of
the- expression <expr>, then return the address
of that value (which might be a temporary).
Thus, MOVE AC, ACCESS(GP) will put the value
o f t h e v a r i a b l e G P i n A C , w h i l e MOVEI A C ,
ACCESS(GP) will put the address of the variable
GP in AC. If the expression is an item
expression (see Leap), then the item’s number
w i l l b e s t o r e d i n a t e m p , a n d t h a t t e m p ’ s
address will be returned. The code emitted for
an Access uses any acs that Sail believes are
available, so one must include a PROTECT,ACS
declaration in a Code block that uses ACCESS if
you want to protect certain acs from being
munged b y t h e A c c e s s . WARNING: skipping
over an Access won’t do the right thing. For
example,

SKIPE FLFIG;
tlOVE '18,tXCESS ('777 UND INTINfCHRN));
MOVE1 '16,Bj

SAiLe ASSEMBLY LANGUAGE STATEMENTS

will cause the program to skip into the mi’ddle
of the code generated by the access if FLAG is
0 . .

START-CODE VERSUS QUICK-CODE
Before your instructions are parsed in a block
star t ing wi th START-CODE, instruct ions are
executed to leave a l l accumulators f rom 0

1 through ‘11 and ‘13 through ‘15 available for
your use. In this case, you may use a JRST to
transfer control out of the code-block, as long
a s y o u d o n o t l e a v e (1) a procedure , (2) a
b lock wi th array declarat ions, (3) a Foreach
loop, (4) a loop with a For list, or (5) a loop
which u s e s t h e N E X T c o n s t r u c t . In a
QUICK,CODE b l o c k , n o a c c u m u l a t o r - s a v i n g
instructions are issued., AC ’S ‘13 through ‘15
only are free. In addition, some recently used
var iab les m a y be given the wrong values if
used as address identifiers (their current values
may be contained in AC ’S 0-Y 1); and control
should not leave the code-b lock except by
“falling through”.

“display” structure of
procedures. DO NOT HARM AC
F!! Disaster will result. A more
exact description of its usage
may be found in the appendix
on procedures and by reading
the code.

ACCUMULATOR USAGE IN CODE BLOCKS
Although we have said that accumulators are
“f reed” for your use, this does not imply a
carte blanche. Usually this means the compiler
saves values currently stored in the ACs which
it-wants to remember (the values of variables
mostly), and notes that when the code block is
finished, these ACs will have values in them
that it doesn’t care about. However, this is not

. the case with the following accumulators, which
are not touched at all by the entrance and exit
of code blocks:

CALLING PROCEDURES FROM INSIDE CODE
BLOCKS
To call a procedure (say, PROT) from inside a
c o d e b l o c k , u s e PUSHJ P, PROT. If the
procedure requires parameters, PUSH P them in
order before you PUSHJ P (i.e. the first one
first, the second one next, etc.). If the formal is
a reference, push the address of the actual
onto the P stack. If the formal is a value string,
push onto the SP stack the two words of the
string descriptor (see the appendix on string
implementation for an explanation of string
descriptors). If the formal is a reference string,
simply PUSH P the address of the second word
of the string descriptor. If the procedure is

I

typed, it will return is value in AC 1, e x c e p t
that STRING procedures return their values as
the top element of the SP stack. More
information can be found in the appendix on
procedure implementation. Example:

INTEGER K; STRING S, SS;
INTEGER PROCEDURE PROT (REAL T; REFERENCE

INTEGER TT; STRING TTT; REFERENCE
STRING TTTT);

BEGIN COMMENT BODY; END;

DEFINE P = ‘17, SP = ‘16;

NAME NUMBER USAGE START-CODE
PUSH P, [3.14 1591;

I

MOVEI I, K;
PUSH P, 1 i
MOVEI 1, S;
PUSH SP, -l(l); COMMENT if Sail rllowod address

arithmetic in Start,cod., you
could hrvr said PUSH SP, S- 1;

PUSH SP, s;

I

MOVEI 1 , S S ;
PUSH P, 1;
P U S H J P,PROT;
END;

P

SP

F

‘17

‘ 1 6

‘ 1 2

The system push down l is t
pointer. Al l procedures are
called with a PUSHJ P, PROC
a n d e x i t e d (u s u a l l y) w i t h a
POPJ P. Use this as your PDL
pointer in the code block, but
be sure that its back to where
it was on entrance to the block
by the time you exit.

The st r ing push down stack
pointer. Used in all string
operations. For how to do
your own string mangling, read
the code.

This is used to maintain the

gives the same effect as

PROT (3.14 159, K, S, SS);

NOTE: procedures will change your

31

ASSEMBLY LANGUAGE STATEMENTS

accumulators unless the procedure
pains to save and restore them.

takes speci al

BEWARE
The Sail <code block> assembler is not FAIL or
MACRO. Read the syntax! Address arithmetic is
not permitted. All integer constants are decimal
unless specified explicitly as octal (e.g., ‘120).
Each instruction is a separate <statement> and
must be separated from surrounding statements
by a semicolon. If you want comments then use
C O M M E N T j u s t l i k e a n y w h e r e e l s e i n S a i l .
QUICK-CODE is for wizards.

SAIL

3 2

SAIL INPUT/OUTPUT ROUTINES

SECTION 6

INPUT/OUTPUT ROUTINES

6.1 Execution-t ime Routines in General

SCOPE
A large set of predeclared, built-in procedures
and functions have been compiled into a library
permanently resident on the system disk area
(SYS:LIBSAn.REL or <SAIL>LIBSAn.REL - n is the

c u r r e n t version n u m b e r ; HLBSAn f o r /H
compilations), and opt ional ly in to a spec ia l
sharable wr i te -protected h igh segment . The
library also contains programs for managing
storage allocation and initialization, and for
certain String functions. If a user calls one of
these procedures, a request is automatically
made to the loader to include the procedure,
and any other routines it might need, in the
core image (or to l ink to the high segment).
T h e s e r o u t i n e s provide input /output (l /O)
facilities, Arithmetic-String conversion facilities,
array-handling procedures and miscellaneous
other interesting functions. The remainder of
this section and the next describes the calling
sequences and functions of these routines.

NOTATIONAL CONVENTJONS
. A short-hand is used in these descriptions for

specifying the types (if any) of the execution-
time routines and of their parameters. Before
t h e d e s c r i p t i o n o f e a c h rout ine there is a
sample call of the form

V A L U E c FUNCTlON (ARG 1, ARGZ, . ARGn)

I f V A L U E i s o m i t t e d , t h e p r o c e d u r e i s a n
u n t y p e d o n e , and may only be called at
statement level (page 19).

The types of ,VALUE and the arguments may be
determ,ined using the following scheme:

1) If ” characters surround the sample
identifier (which is usually mnemonic
in- nature) a Str ing argument is
expected. Otherwise the argument
is- Integer or Real. If it is important
which of the types Integer or Real
must be presented, it will be made
c l e a r i n t h e d e s c r i p t i o n o f t h e
funct ion. Otherwise the compi ler

assumes Integer arguments (for
those functions which are
predeclared). The user may pass
Real arguments to these routines by
re-declaring them in the blocks in
w h i c h t h e R e a l a r g u m e n t s are
desired.

2) If the @ c h a r a c t e r p r e c e d e s t h e
sample identifier, the argument will
be called b.y reference. Otherwise it
is a value parameter.

Example:

“RESULT” c SCAN WSOURCE”, BREAK-TABLE, eBRCHAR)

is - a predeclared procedure with the implicit
declaration:

EXTERNAL STRING PROCEDURE SCAN
(REFERENCE STRING SOURCE;
INTEGER BREAK-TABLE;
REFERENCE INTEGER BRCHAR);

-SKIP,
Some rout ines re turn secondary va lues by
stor ing them in -SKIP, Declare EXTERNAL
INTEGER -SKIP, if you want to examine these
values. In FAIL 01 DDT the spelling is “.SKIP.“.

6.2 I/O Channels and Files

OPEN (CHANNEL, “DEVICE”, MODE,
NUMBER-OF-INPUT-BUFFERS,
NUMBER,OF,OUTPUT-BUFFERS,
QCOUNT, @BRCHAR, @EOF);

Sail input/output operates at a very low level
i n t h e f o l l o w i n g s e n s e : t h e o p e r a t i o n s
necessary to obtain devices, open and close
files, etc., are almost directly analogous to the
system calls used in assembly language. OPEN
is used to associate a channel number (0 to ‘17)
with a device, to determine the data mode of
the l /O to occur on th is channel (character
mode, b inary mode, dump mode, e t c .) , t o
speci fy s torage requirements for the data
buffers used in the operations, and to provide
the system wi th in format ion to be used for

3 3

INPUT/OUTPUT ROUTINES

I
input operations. See page 45 for an example
of TOPS-10 I/O programming.

CHANNEL is a user-provided channel number
which will be used in subsequent l/O
o p e r a t i o n s t o i d e n t i f y t h e d e v i c e .
C H A N N E L m a y r a n g e f r o m 0 t o 1 5
(‘17). A RELEASE will be performed
before the OPEN is executed. a

DEVICE must be a String (i.e. “TTY”,’ “DSK”)
which is recognizable by the system as
a physical or logical device name.

MODE is the data mode for the I/O operation.
MODE 0 will always work for
characters (see INPUT, page 39 and
OUT, page 40). Modes 8 (‘10) and 15
(‘17) are appl icable for b inary and
dump-mode operat ions u s i n g t h e
functions WORDIN, WORDOUT, ARRYIN,
or ARRYOUT (see page 40 and
following). For other data modes, see
[SysCall]. If any of bits 18-21 are on
in the MODE word, the I-O routines will
not print error messages when data
errors occur w h i c h p r e s e n t t h e
corresponding bits as a response to
the GETSTS UUO. Instead, the GETSTS
bits will be reported to the user as
described under EOF below. If bit 23
is on, no error message will be printed
if an invalid file name specification is
p r e s e n t e d t o L O O K U P , E N T E R , o r
R E N A M E , a c o d e i d e n t i f y i n g t h e
problem will be returned (see page
36 ff. for details). If you don’t
understand any of this, leave all non-
mode bits off in the MODE word.

NUMBER,OF,(lNPUT/OUTPUT),BUFFERS
specifies the number of buffers to be
reserved for the I /O operat ions. At
least one buffer must be specified for
input if any input is to be done in

m o d e s o t h e r t h a n ‘ 1 7 ; s i m i l a r l y f o r
output. If data is only going one
direction, the other buffer specification
should be 0. T w o b u f f e r s g i v e
r e a s o n a b l e p e r f o r m a n c e f o r m o s t
devices (1 is sufficient for a TTY, more
are required for DSK if rapid operation
is desi red) . The left half of the
B U F F E R p a r a m e t e r , i f non-zero,

I specifies the buffer size (mod ‘7777)
for the l/O buffers. Use this only if
you desire non-standard sizes.

3 4

SAIL

The remaining arguments are applicable only
for INPUT (String input), They will be ignored
for any other operations (although their values
may be changed by the Open function).

C O U N T d e s i g n a t e s a v a r i a b l e w h i c h w i l l
c o n t a i n t h e m a x i m u m n u m b e r o f
characters to be read from “DEVICE” in.
a g i v e n I N P U T c a l l (s e e p a g e 3 9 ,
page 36) . Fewer characters may be
read if a break character is
encountered or i f an end of f i le is
detected. The count should be a
v a r i a b l e o r constant (not an
expression), since its address is stored,
a n d t h e t e m p o r a r y s t o r a g e f o r a n
expression may be re-used.

BRCHAR ,designates a variable into which the
b r e a k c h a r a c t e r (s e e I N P U T a n d
BREAKSET again) will be stored. This
variable can be tested to determine
which of many possib le characters
terminated the read operation.

EOF designates a variable to be used for
two purposes:

1)

2)

Error handling when OPEN is called.
If the system call used by OPEN
succeeds then EOF is set to zero
and OPEN returns. If the system
call fails then OPEN looks at the
EOF variable; if it is nonzero then
OPEN returns. If EOF is zero then
the user is g iven the opt ion of
retrying or continuing without the
device . I f a re t ry is successfu l
then EOF is zeroed. I f the user
proceeds (gives up) then EOF is set
to nonzero. The net effect is that
the program may interpret EOF=O
as a successful OPEN and EOF#O as
an unsuccessful OPEN.

Error handling for subsequent l/O
operations. EOF will be made non-
zero (TRUE) if an end of file
condition, or any error condition
among those enabled (see MODE,
above) is detected during any Sail
input/output operation. It will be 0
(F A L S E) o n r e t u r n t o t h e u s e r
otherwise. Subsequent inputs
a f t e r a n E O F r e t u r n w i l l r e t u r n
non-zero values in EOF and a null

SAIL-

S t r i n g r e s u l t f o r I N P U T . For
ARRYIN, a 0 is returned as the
value of the call after end of file is
detected. If EOF is TRUE after such
an operation, it will contain the
e n t i r e s e t (1 8 b i t s) o f G E T S T S
information in the left half. The
EOF bit is ‘20000, and is the only
one you’ll ever see if you haven't
specially enabled for others.

Here are the error bits for SUAI and TOPS- IO;
T E N E X S a i l u s e s t h e E R S T R e r r o r n u m b e r
instead.

400000 improper mode (a catchall)
2 0 0 0 0 0 p a r i t y e r r o r .
lOOqO0 d a t a e r r o r
4 0 0 0 0 record number out of bounds
2 0 0 0 0 end of file (input only)

Y o u ‘are always enabled for bit 20000 (EOF).
However, to be allowed to handle any of the
others, you must turn on the corresponding bit
in the right half of the MODE word. In addition,
the 10000 bit is used to enable user handling
of invalid file specifications to ENTER, LOOKUP,
and RENAME. ‘7500017 in the MODE parameter
w o u l d e n a b l e a d u m p m o d e f i l e f o r u s e r
handling of ALL l/O errors on the channel. If
yau are not enabled for a given error, an error
message (which may or may not be fatal) will
be pr inted, and the error code word set as
indicated.. In addition, the number of words

’ actually transferred is stored in the right half
of the EOF variable for ARRYIN, ARRYOUT.

Assembly Language Approximation to OPEN:

INIT CHANNEL, tlOOE
SIXBIT /DEVICE/
XWD OHED,IHED
JRST <handle error condition>
JUtlPE <NlJflBER,OF-OUTPUT-BUFFERS>, GETIN
<allocate buffor space
OUTBUF CHFINNEL, NUHBER,OF,OUTPUT&JFFERS

GETIN: JUI'IPE <NUtlBER,DF,INPUT&JFFERS>, DONE
iallocato buf f r r spacoB
INBUF CHRNNEL, NUtlBER,OF,INPUT-BUFFERS

DONE: <mark channel open -- internal bookkorping>
*return>

I OHED: BLOCK 3
1 SHED: BLOCK 3 -

INPUT/OUTWT ROUTINES

CLOSE, CLOSIN, CLOSO

I CLOSE (CHANNEL, BITS(O));
CLOSIN (CHANNEL, BITS(O));
CLOSO (CHANNEL, BITS(O))

The input (CLOSIN) or output (CLOSO) side of
the specified channel is closed: all output. is
forced out (CLOSO); ,the current file name is
forgotten. However the device is still active; no
OPEN need be done aga in before the next
LOOKUP/ENTER operation. A l w a y s C L O S E
output fi les: Sail exit code will deassign the
device, but does not force out any remaining
output; you must do a CLOSE when writing on a
disk file to have the new file (or a newly edited
old file) entered on your User File Directory.
No INPUT, OUT, etc., may be given to a directory
device until an ENTER, LOOKUP, or RENAME has
been issued for the channel.

CLOSE is equivalent to the execution of both

I

C L O S I N a n d C L O S O f o r t h e c h a n n e l . B I T S
specifies the close inhibit bits, which default to
z e r o . S e e [SysCall] for the in terpretat ion of
the bits.

GETCHAN

VALUE + GETCHAN

GETCHAN returns the number of some channel
which Sail believes is not currently open. The
value -1 is returned if all channels are busy.

RELEASE

1 RELEASE (CHANNEL, BITS(O))

If an OPEN has been executed for this channel,
a CLOSE is now executed for it. The device is
dissociated from the channel and returned to
the resource pool (unless it has been assigned
b y t h e m o n i t o r A S S I G N c o m m a n d) . N o I / O
o p e r a t i o n m a y r e f e r t o t h i s c h a n n e l u n t i l
another OPEN denoting it has been executed.

I
BITS speci f ies the CLOSE inhibi t b i ts; see
[SysCall].

Release is a lways va l id . I f t h e c h a n n e l
mentioned is not currently open, the command
is simply ignored.

3 5

INPUT/OUTPUT ROUTINES

LOOKUP, ENTER

SAIL

LOOKUP (CHANNEL, “FILE”, @FLAG);
ENTER (CHANNEL, “FILE”, @FLAG)

Before input or output operat ions may be
performed for a directory device (DECtape or
DSK) a file name must be associated with the
channel on which the device has been opened
(see page 33). LOOKUP names a file which is to
be read. ENTER names a file which is to be
c r e a t e d o r e x t e n d e d (s e e [SysCall]). It is
recommended that an ENTER be per formed
after every OPEN of an output device so that
output not normally directed to the DSK can be
directed there for later processing if desired.
The format for a file name string is

“NAME”, or
“NAME.EXT”, or
“NAME(P,PN I”, or
“NAME.EXT[P,PN]“, or

I “NAME.EXT(P,PN”

See [MonCom] for the meaning of these things
if you do not immediately understand.

Sail is not as choosy about the characters it
allows as some processors are. Any character
w-hich is not a c o m m a , per iod, r ight square
bracket, or left square bracket will be passed
on. Up to 6 characters from NAME, 3 from EXT,
P, or PN will be used -- the rest are ignored.

If the LOOKUP or ENTER operation fails then
variable FLAG may be examined to determine
the cause. The left half of FLAG will be set to
‘777777 (Flag has the logical value TRUE). The
right half will contain the code returned by the
system giv ing the cause of the fa i lure . An
invalid file specification will return a code of
‘10. In this case, if the appropriate bit (bit 23,
see OPEN) was OFF in the MODE parameter .of
the OPEN, an error message will be pr in ted;
otherwise , the rout ine just re turns wi thout
performing the. UUO. _ .

If the LOOKUP or ENTER succeeds, FLAG will be
set to zero (FALSE).

RENAME (CHANNEL, “FILE-SPEC”,
PROTECTION, @FLAG)

T h e f i l e o p e n o n C H A N N E L i s r e n a m e d t o
FILE,SPEC (a NULL file-name will delete the file)
w i t h r e a d / w r i t e p r o t e c t i o n a s s p e c i f i e d i n
PROTECTION (nine bits, described in [SysCallJ).
FLAG is set as in LOOKUP and ENTER.

ERENAME

ERENAME (CHANNEL,“FlLE-SPEC”,
PROTECTION, DATE, TIME,
MODE, @FLAG)

(Not on TENEX.) This extended vers ion of
RENAME allows complete specification of all the
data which may be changed by a RENAME.

6.3 Break Characters

BREAKSET

BREAKSET (TABLE, “BREAK-CHARS”, MODE)

Character input/output is done using the String
features of Sail. In fact, l/O is the chief
justification for the existence of strings in the
language.

String input presents a problem not present in
String output. The length of an output String
c a n b e u s e d t o d e t e r m i n e t h e n u m b e r o f
characters written. However it is often
awkward to require an absolute count for input.
Quite often one would like to terminate input,
or “break” , when one of a spec i f ied set o f
characters is encountered in the input stream.
In Sail, this capability is implemented by means
of the BREAKSET, INPUT, TTYIN, and SCAN
functions. The value of TABLE may range from

I

- 1 7 t o 5 4 , b u t t a b l e s - 1 7 t h r o u g h - 1 a r e
reserved for use by the runtime system. Thus
up to 54 different sets of user break
specifications may exist at once. Which set will
be used is determined by the TABLE parameter

1 in an INPUT or SCAN function call. Breaktables

3 6

SAl& INPUT/OUTPUT ROUTINES

I are dynamically allocated in blocks of 18 (1-18,
19-36, 37-54).

I BREAKSET merely modifies the existing settings
i n T A B L E ; u s e GETBREAK (w h i c h r e t u r n s a
virgin table) if you want to achieve an absolute
k n o w n s t a t e . The function of a given
BREAKSET command depends on the MODE, an
integer which is interpreted as a right-justified
ASCII character whose value is intended to be
vaguely mnemonic. BREAKSET commands can
be partitioned into 4 groups according to mode:

GROUP 0 -- Conversion specifications

MODE FUNCTION

” wK (Konvert) Th e minuscule letters (a-t)
will be converted to majuscule (A-Z)
before doing anything else.

” ”F (F u l l c h a r a c t e r s e t) U n d o e s t h e
e f f e c t o f “ K ” . Mode “F” is the
default.

“2” (Zero bytes) Believe the breaktable
w h e n I N P U T r e a d s a z e r o b y t e .
I N P U T a u t o m a t i c a l l y o m i t s z e r o
characters otherwise. Mode “2” is
turned of f by both mode “ I” and
mode “X”.

GROUP 1 -- Break character specifications

MODE FUNCTION

“”I (by Inclusion) The characters in the
BREAK-CHARS String comprise the
set . of characters which will
terminate an INPUT (or SCAN).

“X” (by eXclusion) Only those characters
(of the possible 1 2 8 A S C I I
characters) which are NOT contained
in the Str ing BREAK-CHARS wi l l
terminate an input when using this
table.

"0" (Omit) The characters in
“BREAK-CHARS” wi l l be omitted
(deleted) from the input string.

Any “I” or “Xy command completely specifies the
break character set for its table-(i.e., the table
is reset before these characters are stored in
it). Neither will destroy the omitted character

set currently specified for this table. Any “0”
command completely specifies the set of
omitted characters, without altering the break
characters for the tab le in quest ion. If a
character is a break-character, any role it might
play as an omitted character is sacrificed.

T h e n e x t g r o u p o f M O D ES d e t e r m i n e s t h e
disposition of break characters in the input
stream. The “BREAKJZHARS” a r g u m e n t i s
ignored in these commands, and may in fact be
NULL:

GROUP 2 -- Break character disposition

MODE FUNCTION

” ,IS (Skip - - d e f a u l t m o d e) A f t e r
execution of an “S” command the
b r e a k c h a r a c t e r w i l l n o t a p p e a r
either in the resultant String or in
subsequent INPUTS or SCANS-- the
character is “skipped”. I ts value
may be determined after the INPUT
by. e x a m i n a t i o n o f t h e b r e a k
character variable (see page 33).

“A” (Append) The b reak character (i f
there is one - - s e e p a g e 3 3 a n d
page 39) is a p p e n d e d , o r
concatenated to the end of the input
str ing. lb will not appear again in
subsequent inputs.

n uR (Retain) The b reak character does
not appear in the resultant INPUT or
SCAN String, but will be the first
character processed in the next
operat ion re ferr ing to th is input
source (file or SCAN String).

Text fi les containing line numbers present a
special problem. A line number is a word
containing 5 ASCII characters representing the
number in bits O-34, with a “1” in bit 35. No
other words in the fi le contain l’s in bit 35.
Since String manipulations provide no way for
distinguishing line numbers from other
characters, there must be a way to warn the
user that line numbers are present, or to allow
him to ignore them entirely.

T h e n e x t g r o u p o f M O D ES d e t e r m i n e s t h e
disposition of these line numbers. Again, the
“BREAK-CHARS” argument is ignored:

37

INPUT-/OUTPUT ROUTINES SAIL

Group 3 -- Line number disposition

MODE FUNCTION

“P” (Pass -- default) Line numbers are
t reated as any other characters .
Their identity is lost; they simply
appear in the result string.

“N” (No numbers) No line number (or the
T A B w h i c h a l w a y s f o l l o w s i t i n
standard files) will appear in the
resul t s t r ing. T h e y a r e s i m p l y
discarded.

I nL (Line no. break) The result String
will ’ be terminated early if a line
number is encountered. The
characters c o m p r i s i n g t h e l i n e
number and the associated TAB will
appear as the next 6 characters
read or scanned from this character
source. The user’s break character
var iable (see page 33 and ‘page
39) will be set to -1 to indicate a
line number break.

“E” (Lee Erman’s very own mode) The
result String is terminated on a line
number as with “L”, but neither the
line number nor the TAB following it
will appear in subsequent inputs.
The line number word, negated, is
r e t u r n e d i n t h e u s e r ’ s (i n t e g e r)
BRCHAR variable.

n III D (Display) obsolete

Once a break table is set up, it may be
referenced in an INPUT, TTYIN or SCAN call to
control the scanning operation.

Example: To delimit a “word”, a program might
wish to input characters until a blank, a TAB, a
line feed, a comma, or a semicolon is
encountered, ignoring line numbers. Assume
also fhat carriage returns are to be ignored,
and that the break character is to be retained
in the character source for the next scanning
operation:

3 8

BREAKSET (DELIMS, ” , ;“&TAB&LF, “I”);
Comment break on eny of theso;

BREAKSET (DELIMS, ‘15, “0”);
Comment ignore carriage rrturn;

BREAKSET (DE LIMS, NULL, “N”);
Comment ignore lino numbers;

BREAKSET (DELIMS, NULL, “R”);
Comment save break char for next time;

B r e a k t a b l e 0 i s builtin a s e q u i v a l e n t t o
SETBREAK (0, NULL, NULL, “I”). This is break-
on-count for INPUT and returns the whole
string from SCAN.

SETBREAK

SETBREAK (TABLE, “BREAK-CHARS”,
“OMIT-CHARS”, “MODES”)

SETBREAK is logica l ly equiva lent to the Sai l
statement:

BEGIN “SETBREAK”
INTEGER I;

IF LENGTH (OMIT-CHARS) > 0 THEN
BREAKSET (TABLE, OMIT-CHARS, “0%

FOR It1 STEP 1 UNTIL LENGTH (MODES) DO
BREAKSET (TABLE, BREAK-CHARS, MODES[I FOR I])

END “SETBREAK”

GETBREAK, RELBREAK

TABLE + GETBREAK;
RELBREAK (TABLE)

GETBREAK f i n d s a n u n r e s e r v e d b r e a k t a b l e ,
reserves it, sets it to a completely virgin state,
and returns the number of the table.
GETBREAK r e t u r n s - 1 8 i f t h e r e a r e n o f r e e
tables. Breaktables are r e s e r v e d b y
GETBREAK, SETBREAK, BREAKSET, and STDBRK.
RELBREAK returns a table to the available list.

SAIL_ INPUT/OUTPUT ROUTINES

STDBRK

STDBRK (CHANNEL) I automatically omitted (text editor convention)
unless mode “Z” was specified for the
breaktable. Input may be terminated in several
ways. The exact reason for termination can be
obtained by examining BRCHAR and EOF:Eighteen breakset tables have been selected as

r e p r e s e n t a t i v e o f t h e m o r e c o m m o n i n p u t
scanning operations. The function STDBRK
initializes the breakset tables by opening the
file SYS:BKTBL.BKT on CHANNEL and reading
in these tables. The user may then reset those
tables which he does not like to something he
does like.

The e ighteen tab les are d e s c r i b e d h e r e b y
giving the SETBREAKs which would be required
for the user to initialize them:

DELIMS c ‘15 t ‘12 P ‘40 6 ‘1 1 t ‘14;
Comment carrirgo return, line food, sp~co,

tab, form ford;
LETTS e “ABC . . . Zabc . . . 2,“;
DIGS c “0 123456789”;
SAILID c LETTSQDIGS;

SETBREAK (1, ‘12, ‘15, “INS”);
SETBREAK (2, ‘12, NULL, “INA”);
SETBREAK (3, DELIMS, NULL, “XNR”);
SETBREAK (4, SAILID, NULL, “INS”);
SETBREAK (5, SAILID, NULL, “INR”);
SETBREAK (6, LETTS, NULL, “XNR”);

- SETBREAK (7, DIGS, NULL, “XNR”);
SETBREAK (8, DIGS, NULL, VW;
SETBREAK (9, DIGS, NULL, “INR”);
SETBREAK (10, DIGS&“+o.“, NULL, “XNR”);
SETBREAK (1 1, DIGS&“+-a.“, NULL, “INS”);
SETBREAK (12, DIGWee.“, NULL, “INR”);
SETBREAK (13-18, NULL, NULL, NULL);

6.4 I/O Routines

INPUT

“RESULT” + INPUT (CHANNEL, BREAK-TABLE)

A string’ of characters is obtained for the file
open on CHANNEL, and is re turned a s t h e
result. The INPUT operation is controlled by
BREAK-TABLE (see page 36) and the reference
variables BRCHAR, EOF, and COUNT ‘which are
provided by the user in the OPEN function for

1 th is channel (see page 33) . Zero bytes are

EOF BRCHAR

zo 0 End of file or an error (if
enabled, see page 33) occurred
while reading. The result is a
String containing all non-
omitted characters which
r e m a i n e d i n t h e f i l e w h e n
INPUT was called.

0 0 N o b r e a k c h a r a c t e r s w e r e
encountered. T h e r e s u l t i s a
String of length equal to the
current COUNT specifications
for the CHANNEL (see page 33).

0 <o A line number was encountered
and the break table specified
that someone wanted to know.
The result String contains all
characters up to the line
number. I f m o d e “L” w a s
specified in the Breakset
setting up this table, bit 35 is
turned off in the line number
w o r d S O t h a t i t w i l l b e i n p u t
next time. -1 is placed in
BRCHAR. I f m o d e “E” w a s
specified, the line number will
not appear in the next input
Str ing, but i ts negated ASCI I
value, complete with low-order
line number bit, will be found
in BRCHAR.

0 >O A break character was
encountered. The break
character is stored in BRCHAR
(an INTEGER reference variable,
see page 33) as a right-
j u s t i f i e d ‘/-bit ASCI I value. I t
may also be tacked on to the
e n d o f t h e r e s u l t S t r i n g o r
saved for next time, depending
o n t h e BREAKSET m o d e (s e e
page 36).

If break table 0 is specified, the only criteria
f o r t e r m i n a t i o n a r e e n d o f f i l e o r C O U N T
exhaustion.

3 9

INPUT/OUTPUT ROUTINES SAIL

SCAN

“RESULT” +- SCAN (&SOURCE”,
BREAK-TABLE, @BRCHAR)

SCAN functions identically to INPUT with the
following exceptions:

1. The source is not a data file but the
String SOURCE, called by reference.
The Str ing SOURCE is t runcated
from the left to produce the same
effect as one would obtain if
SOURCE were a data file. The
disposition of the break character is
the same as it is for INPUT.

2. BRCHAR is directly specified as a
parameter . INPUT gets i ts break
character variable from a table set
up by page 33.

3. L ine number considerat ions are
irrelevant.

SCANC

“RESULT” + SCANC (“SOURCE”,
“BREAK”, “OMIT”, “MODE”);

This routine is equivalent to the following Sail
code:

STRING PROCEDURE SCANC (STRING ARG, BRK,
OMIT, MODE);

BEGIN “SCANC” INTEGER TBL, BRCHAR; STRING RSLT;
TBLtGETBREAK; SETBREAK (TBL, BRK, OMIT, MODE);
RSLTcSCAN (ARC, TBL, BRCHAR);
RELBREAK (TBL);
RETURN (RSLT) END “SCANC”;

Note that the arguments are all value
parameters, so that SCANC will be called at
compile time if the arguments are constants. It
is intended that SCANC be used with ASSIGNC
in macros and conditional compilation. For
scanning at execution time, it is much more
efficient to use SCAN directly.

OUT

OUT (CHANNEL, “STRING”)

STRING is output to the file open on CHANNEL.
If the device is a TTY, the String will be typed
immediately. B u f f e r e d m o d e t e x t o u t p u t i s
employed for this operation. The data mode
specified in the OPEN for this channel must be
0 or 1. The EOF variable will be set non-zero
as described in page 33 if an error is detected
and the program is enabled for it; 0 otherwise.

LINOUT

LINOUT (CHANNEL, NUMBER)

ABS (NUMBER) mod 100,000 is converted to a 5
character ASCII string. These characters are
placed in a s ingle word in the output f i le
designated by CHANNEL with the low-order bit
(line-number bit) turned on. A tab is inserted
after the line number. Mode 0 or 1 must have
been specified in the OPEN (page 33) for the
results to be anywhere near satisfactory. EOF
is set as in OUT.

SETPL

SETPL (CHANNEL, @LINNUM,
@PAGNUM, (aSOSNUM)

This routine allows one to keep track of the
string input from CHANNEL. Whenever a ‘12 is
encountered, LINNUM is incremented. Whenever
a ‘14 is encountered, PAGNUM is incremented
and LINNUM is zeroed. Whenever an SOS line
n u m b e r i s e n c o u n t e r e d i t i s p l a c e d i n t o
SOSNUM.

WORDIN

VALUE + WORDIN (CHANNEL)

The next word from the file open on CHANNEL
is returned. A zero is returned, and EOF (see
page 33 , page 39) set , when end of f i le or
error is encountered. T h i s o p e r a t i o n i s
performed in buffered mode or dump mode,
depending on the mode specification in the
OPEN.

4 0

SAIL

WARNING ABOUT DUMP MODE IO
Dump Mode (mode ‘15, ‘16, or ‘17) is
sufficiently device and system dependent that
you should consult [SysCall] and be extremely
careful.

ARRYIN

ARRYIN (CHANNEL, @LOC, HOW-MANY)

HOW-MANY words are read from the device and
file open on CHANNEL, and deposited in memory
starting at location LOC. Buffered-mode input
is done if MODE (see page 33) is ‘10 or ‘14.
Dump-mode input is done if MODE is ‘16 or ‘17.
Other modes are illegal. See the warning about
D u m p M o d e I O a b o v e . I f a n e n d o f firfo;;
enabled error condition occurs

1 HOW-MANY words are read in buffered mode
then the EOF variable (see page 33) is set to
the enabled bits in its left half, as usual. Its
right half contains the number of words actually
read. EOF will be 0 if the full request is

I

sat is f ied. N O indicat ion of how many words
w e r e a c t u a l l y r e a d i s g i v e n if EOF is
encountered while reading a file in DUMP mode.

WORDCUT

WORDOUT (CHANNEL, VALUE)

V A L U E i s p l a c e d i n t h e o u t p u t b u f f e r f o r
CHANNEL. An OUTPUT is done when the buffer
is full or when a CLOSE or RELEASE is executed
for this channel. Dump mode output will be
done if dump mode is specified in the OPEN (see

page 33). EOF is set as in OUT. See the
warning about Dump Mode IO above.

ARRYOUT

ARRYOUT (CHANNEL, aLOC, HOW-MANY)

HOW-MANY words are written from memory,
starting at location LOC, onto the device and
file open on channel CHANNEL. The valid modes
a r e a g a i n ‘1-0, ‘ 1 4 , ‘ 1 6 , a n d ‘17, T h e E O F
variable is set as in ARRYIN, except that the
EOF bit itself will never occur.

INPUT/OUTPUT ROUTINES

INOUT

INOUT (INCHAN, OUTCHAN, HOWMANY)

INOUT r e a d s HOWMANY w o r d s f r o m c h a n n e l
INCHAN a n d w r i t e s t h e m o u t o n c h a n n e l
OUTCHAN. Each channel must be open in a
mode between 8 and 12. On return, the EOF
variables for the two channels will be the same
as if ARRYIN & ARRYOUT had been used. If
HOWMANY is less than zero, then transfer of
data wi l l cease only upon end of f i le or a
device error. INOUT is not available in TENEX
Sail.

GETSTS, SETSTS

SETSTS (CHAN, NEW-STATUS);

issues a SETSTS uuo on channel CHAN with the
status value NEW-STATUS.

STATUS + GETSTS (CHAN)

returns the results of a GETSTS uuo on channel
CHAN.

These functions do not exist in TENEX Sail.
Instead, see GTSTS, GDSTS, STSTS, and SDSTS
for analogous features.

MTAPE

MTAPE (CHANNEL, MODE)

MTAPE is ignored unless the device associated
with CHANNEL is a magnet ic tape dr ive . I t
performs tape actions as follows:

MODE FUNCTION

H *IA Advance past one tape mrrk (or file)
“B” Backspace past one tape mark
” uE Write trpe mark
” 88F Advance one record

I
I‘ (8I Set ‘IBM compatible’ mode
I(IIR Backspace one record
I, IIS Write 3 inches of blank tape
II 8’T Advance to logical end of tape
“U” Rewind and unload

Rewind tape
Wait until all rctivity ceases

41

INPUT/OUTPUT ROUTINES

USETI, USETO <sign>
::- +

USETI (CHANNEL, VALUE);
USETO (CHANNEL, VALUE)

::m -
::- <empty>

These routines are for random file access (see
[SysCaII]).

REALIN, INTIN

VALUE t REALIN (CHANNEL);
VALUE + INTIN (CHANNEL)

N u m b e r i n p u t m a y b e o b t a i n e d u s i n g t h e
f u n c t i o n s REALIN o r INTIN, d e p e n d i n g o n
w h e t h e r a R e a l n u m b e r o r a n I n t e g e r i s
required. Both funct ions use the same f ree
field scanner, and take as argument a channel
number.

Free f ie ld scanning w o r k s a s follows:
characters are scanned one at a time from the
input channel, ignoring everything until a digit
or dec imal po int is encountered. T h e n a
number is scanned according to this syntax,
with zero bytes, l ine numbers, and carriage
returns (but not linefeeds) ignored:

<number>
::- <sign> <real number>

<real number>
::= <decimal number,
::- <decimal number, <exponent>
::= <exponent>

<decimal number>
::- <integer>
::= <integer, .
::- <integer> . <integer>
,::- . <integer>

<integer>
::= <digit>
::- &teger* <digit>

<exponent> These routines do input and output to tmpcor
::- Qp <sign> <integer> files (simulated files kept in core storage--see

I ::- E <sign> <integer> [SysCall]).

4 2

SAIL

If the digit is not part of a number an error
message will be printed and the program will
halt. Typing a carriage return will cause the
input function to return zero.

On input, leading zeros are ignored. The ten
most significant digits are used to form the
number. A check for overflow and underflow is
made and an error message pr inted i f th is
o c c u r s . W h e n u s i n g INTIN any exponent is
removed by scal ing t h e I n t e g e r n u m b e r .
Rounding is used in this process. All numbers
are accurate to one half of the least significant
bit;

After scanning the number the last delimiter is
replaced on the input string and is returned as
the break character for the channel . I f no
number is found, a zero is returned, and the
break variable is set to -1; If an end of file or
enabled error is sensed this is also returned in
the appropriate channel variable. The maximum
character count appearing in the OPEN call is
ignored.

REALSCAN, INTSCAN

VALUE + REALSCAN ((a”NUMBER,STRING”,
(aBRCHAR);

VALUE + INTSCAN (&NUMBER-STRING”,
(mBRCHAR)

These functions are identical in function to
REALIN and INTIN. Their inputs , however , are
obtained from their NUMBER-STRING arguments.
These routines replace NUMBER-STRING by a
string containing all characters left over after
the number has been removed from the front.

TMPIN, TMPOUT

“RESULT” I- TMPIN (“FILE”, @ERRFLAG);
TMPOUT (“FILE”, “TEXT”, @ERRFLAG)

SAIL

TMPIN returns a string consisting of the entire
contents of the tmpcor fi le of the specified
name. Only the first three characters in the file
name are significant. If the input fails for some
reason (most likely: no tmpcor file with the
speci f ied name) then ERRFLAG is set to true
and NULL is returned. Otherwise ERRFLAG is
set to false.

TMPOUT writes its string argument into the
specified tmpcor file. T h e ERRFLAG has the
same function as in TMPIN; in case of error, the
tmpcor fi le is not written. Likely causes for
error are r u n n i n g o u t o f t m p c o r s p a c e
(current ly , the sum of the s izes of a l l the
tmpcor files for a single job may not exceed
=256 w.ords) o r a t t e m p t i n g t o w r i t e a n u l l
tmpcor file (i.e., calling TMPOUT with the string
argument NULL).

TMPIN executes a TMPCOR uuo with code 1, and
hence does not delete the specified tmpcor file.
The length of the returned string will always be
a mul t ip le of f ive , s ince words rather than
c h a r a c t e r s are actua l ly be ing t ransferred.
TMPOUT executes a TMPCOR uuo with code 3.
The last word of the string is padded with nulls
If necessary before the data transfer is done.

Naither function is available in TENEX Sail.

AUXCLR, AUXCLV

RSLT + AUXCLR (PORT, @ARG, FUNCTION);
RSLT t AUXCLV (PORT, ARG, FUNCTION)

. (TYMSHARE only .) These funct ions perform
A U X C A L system calls; the only difference is
w h e t h e r A R G i s b y r e f e r e n c e o r b y v a l u e .
-SKIP, is set.

CHNIOR, CHNIOV

RSLT + CHNIOR (CHAN, @ARG, FUNCTION);
RSLT c CHNIOV (CHAN, ARG, FUNCTION)

(T Y M S H A R E only.) These functions perform
CHANIO system cal ls ; the only d i f ference is
whether ARG is by re ference _ or by value.
-SKIP, is set.

INPUT/OUTPUT ROUTINES

6.5 TTY and PTY Routines

TELETYPE I/O ROUTINES -

Each of the I /O funct ions uses the TTCALL
UUO’s to do direct TTY l/O.

BACKUP
The system attempts to back up its
T T Y i n p u t b u f f e r p o i n t e r t o t h e
beginning of the last “line”, thus
allowing you to reread it. In
general this cannot possibly work,
so do not use BACKUP.

CLRBUF
Flushes the input buffer.

CHAR + iNCHRS
R e t u r n s a n e g a t i v e v a l u e i f n o
characters have been typed;
otherwise it is INCHRW.

CHAR + INCHRW
Waits for a character to ‘be typed
and returns that character.

“STR” * INCHSL (aFLAG)
Returns NULL with FLAG + 0 if no
lines have been typed. Otherwise
i t s e t s F.LAG t o 0 a n d p e r f o r m s
INCHWL.

“STR” + INCHWL
Waits for a l ine to be typed and
returns a st r ing conta in ing all
characters up to (but not including)
t h e a c t i v a t i o n c h a r a c t e r . The
act ivat ion character is put into
-SKIP, If the activation character
is CR then the next character is
discarded (on the assurnption that
it is LF).

“STR” + INSTR (BRCHAR)
Returns as a string all characters
up to, but not including, the first
instance of BRCHAR, The BRCHAR
instance is lost.

“STR” * INSTRL (BRCHAR)
Waits for a line to be typed, then
performs INSTR.

4 3

INPUT/OUTPUT ROUTiNES

“STR” + INSTRS (@FLAG, BRCHAR)
Is INCHSL if no lines are waiting;
INSTRL otherwise.

IONEOU (CHAR)
(TYMSHARE only.) The low-order 8
bits of CHAR are sent to the TTY in
image mode.

OUTCHR (CHAR)
T y p e s i t s c h a r a c t e r a r g u m e n t
(right-justified in an integer
variable).

OUTSTR (“STR”)
Types its string argument until the
end of the string or a null
character is reached.

“STR” + TTYIN (TABLE, aBRCHAR)
U s e s t h e b r e a k t a b l e f e a t u r e s
described in page 36 and page 39
to return a string and break
character. Mode “R” is illegal; line
number modes are irrelevant. The
input count (see page 33) is set at
100.

“STR” + TTYINL (TABLE, aBRCHAR)
Waits for a line to be typed, then
does TTYIN.

“ S T R ” + TTYINS (TABLE, aBRCHAR)
Sets BRCHAR to #O and returns
NULL if no lines are waiting.
Otherwise it is TTYINL.

OLDVAL + TTYUP (NEWVAL)
Causes conversion of lower case
characters (a -z) to the i r upper
case equivalents for strings read
by any of the Sail teletype
rout ines that do not use break
tables. If NEWVAL is TRUE then
conversion will take place on all
subsequent inputs until
TTYUP(FALSE) is cal led. OLDVAL
will be set to the previous value of
the conversion flag. If TTYUP has

_ never been called, then no
conversions will take place, and the
f i r s t c a l l t o T T Y U P w i l l r e t u r n
FALSE. In TENEX, TTYUP sets the
system parameter using the STPAR
jsys to convert to upper case.

SAIL

- PSEUDO-TELETYPE FUNCTIONS -

Pseudo-teletype functions are available at SUAI
only.

LODED (“STR”)
L o a d s t h e l i n e e d i t o r w i t h t h e
string argument. PTOSTR should
b e u s e d r a t h e r t h a n L O D E D i f
possible, since LODE0 works only
on a DO or Ill, while PTOSTR works
on all terminals.

“STR” + PTYALL (LINE)
Returns whatever is in the PTY’s
output buffer. No waiting is done.

CHAR + PTCHRS (LINE)
Reads a character from the PTY if
there is one, returns -1 if none.

CHAR + PTCHRW (LINE)
Waits for a character from the PTY
and returns it.

PTOCHS (LINE, CHAR)
Tries to send a character to a PTY.
If the attempt was successful, the
g l o b a l v a r i a b l e -SKIP, i s - 1 ,
otherwise 0.

PTOCHW (LINE, CHAR)
Sends a character to a PTY, waiting
if necessary.

NUMBER + PTOCNT (LINE)
Returns the number of free
characters in the PTY output
buffer.

NUMBER + PTIFRE (LINE)
Returns the number of free
characters in the PTY input buffer.

PTOSTR (LINE, “STR”)
Sends the string to the PTY,
waiting if necessary. PTOSTR (0,
“STR”) s e n d s t h e s t r i n g t o y o u r
TTY.

LINE + PTYCET
Gets a new pseudo-teletype line
number and returns it. The global
variable -SKIP, is -1 if the attempt
to get a PTY was successful, and 0
otherwise.

4 4

.

SAIL- INPUT/OUTPUT ROUTINES

CHARACTERISTICS + PTYGTL (LINE)
Returns line characteristics for the
PTY.

“STR” + PTYIN (LINE, BKTBL, aBRCHAR)
Reads f rom the PTY (wai t ing i f
necessary) according to break
table conventions. T h e b r e a k
character is stored in BRCHAR.

PTYREL (LINE)
Releases PTY identified by LINE.

PTYSTL (LINE, CHARACTERISTICS)
Sets line characteristics for the
PTY specified by LINE.

“STR” + *PTYSTR (LINE, BRCHAR)
Reads characters from the’ PTY,
waiting if necessary , * until a
character equal to BRCHAR is seen.
A l l b u t t h e b r e a k c h a r a c t e r i s
re turned as the s t r ing . If the
break character was ‘15 (carriage
return), the following character is
snarfed (on the assumption that it
is a linefeed).

6.6 Example of TOPS-1 0 I/O

BEGIN “COPY”
COMMENT copirr a text file, insorting a semicolon at tha

. beginning of arch lino, dolrting SOS line numbers and
LWO bytor, i f rny . Pr in ts tha pago numbor as it goor;

REQUIRE “[][I” DELIMITERS;
DEFINE CRLF=[(‘l5&‘12)),LF.[‘12), FF.1’141;
INTEGER COLONTAB;

RECORD-CLASS $FILE (STRING DEVICE, NAME;
INTEGER CHANNEL, MODE, IBUF, OBUF,

COUNT, BRCHAR, EOF, LINNUM, PAGNUM, SOSNUM);

RECORD,POINTER($FILE) PROCEDURE OPENUP
(STRING FILNAM; INTEGER MODE, IBUF, OBUF);

BEGIN “OPENUP”
STRING T; RECORD-POINTER @FILE) Q; INTEGER BRK;
&NEW-RECORD. (SFILE); TcSCAN (FILNAM, COLONTAB, BRK);
$FILE:DEVICE(Q]c(lF BRK=“:” THEN T ELSE “DSK”);
tFlLE:NAME(Q]c(lF BRK-“:” THEN FILNAM ELSE T);
SFILE:MODE[Q]cMODE; SFILE:IBUF[Q]clBUF;
$FILE:OBUF[Q]eOBUF; OPEN C$FlLECHANNEL[Q]cGETCHAN,

$FILE:DEVlCE(Q], MODE, IBUF, OBUF, $FILE:COUNT[Q],
$FILE:BRCFlAR[Q], $FILE:EOF[Q]c- 11;

IF NOT($FILE:EOF[Q]) THEN BEGIN .
SETPL (tFILE:CHANNEL[Q], tFILE:LINNUM[Q],

$FILE:PAGNUM[Q], $FILE:SOSNUM[Q]);
IF IBUF THEN

LOOKUP ($FILE:CHANNEL[Q], $FILE:NAME[Q], $FILE:EOF(Q]);
IF OBUF AND NOT (SFILE:EOF[Q]) THEN

ENTER (SFILE:CHANNEL[Q], SFILE:NAME[Q], SFILE:EOF(Q]);
END;
SFILE:PAGNUM[Q]c 1;
IF tFILE:EOF(Q] THEN RELEASE<SFlLE:CHANNEL[Q]);
RETURN(Q)
END “OPENUP”;
COMMENT Sail I/O should be rewritten to do this t;

RECORD-POINTER ($FILE) PROCEDURE GETFILE
(STRING PROMPT; INTEGER MODE, I, 0);

BEGIN “GETFILE”
RECORD-POINTER ($FILE) F; INTEGER REASON;
WH!LE TRUE DO BEGIN “try”

PRINT (PROMPT);
IF (REASONcSFILE:EOF[FcOPENUP (INCHWL,

MODE, I, O)])=O THEN RETURN (F);
IF REASON-1 THEN

PRINT (“Device, “, tFILE:DEVICE[F], ” not ovriloblr.“)
ELSE PRlNT(“Error, (0 CASE (0 MAX REASON MIN 4) OF

(“no such 6 (0 “illagrl PPN “, “protection “,
“busy , . . .” @‘933 ”1, $FILE:NAME[F], CRLF);

END “try”;
END “GETFILE”;

RECORD-POINTER 0FILE) SRC, SNK;
INTEGER FFLFTAB;

SETBREAK (COLONTABcGETBREAK, I:“, “*, “ISN”);
WHILE TRUE DO BEGIN “big loop”

STRING LINE;
SRCcGETFlLE (“Copy from:“, 0, 5, 0);
SFlLE:COUNT(SRC]c200;
SNKcGETFlLE (” to:“, 0, 0, 5);
SETBREAK (FFLFTABcGETBREAK, FF&LF, ““, “INA”);

WHILE TRUE DO BEGIN “a line” ’
LlNEclNPUT ($FILE:CHANNEL(SRC], FFLFTAB);
IF $FILE:EOF[SRC] THEN DONE;
IF tFILE:BRCHAR[SRC]=FF THEN BEGIN

PRINT (” *, $FILE:PAGNUM[SRC]);
LlNEcLlNE&

INPUT ($FILE:CHANNEL[SRC], FFLFTAB) END;
CPRINT ($FILE:CHANNEL[SNK], I’;“, LINE)

END “a line”;
RELEASE ($FILE:CHANNEL[SRC]);
RELEASE ($FILE:CHANNEL[SNK])

END “big loop”;
E N D “ C O P Y ”

4 5

EXECUTION TIME ROUTINES SAIL

I SECTION 7

EXECUTION TIME ROUTINES

Please read Execution Time Routines in General,
page 33, if you are unfamiliar with the format
used to describe runtime routines.

cvs

“ASCIl,STRING” + CVS (VALUE);

The decimal Integer representation of VALUE is
produced as an ASCII String with leading zeroes
o m i t t e d (u n l e s s W I D T H h a s b e e n s e t b y
SETFORMAT to some negative value). ‘I-” will be
concatenated to the String representing the
decimal absolute value of VALUE if VALUE is
negative.

7.1 Type Conversion Routines

CVD
SETFORMAT

SETFORMAT (WIDTH, DIGITS)

This function allows specification of a minimum
width for strings created by the functions CVS,
CVOS, CVE, CVF, and CVG (see page 46 and
following). If WIDTH is positive then enough
blanks will be inserted in front of the resultant.
s t r i n g t o m a k e t h e r e s u l t a t l e a s t W I D T H
characters long. The sign, if any, will appear
af ter the b lanks. If WIDTH is negative then
leading zeroes will be used in place of blanks.
The s ign, of course, wi l l appear before the
zeroes. The parameter WIDTH is initialized by
the system to zero.

~ In addition, the DIGITS parameter allows one to
s p e c i f y t h e n u m b e r o f d i g i t s t o a p p e a r
following the decimal point in strings created
by CVE, CVF, and CVG. This number is initially
7 . See the wr i teups on these funct ions for
details. .

VALUE + CVD (“ASCII,STRING”)

ASCII-STRING should be a String of decimal
ASCII characters perhaps preceded by plus
and/or minus signs. Characters wi th ASCI I
values I SPACE (‘40) are ignored preceding the
number. Any character not a digit will
t e r m i n a t e t h e c o n v e r s i o n (w i t h n o e r r o r
indication). The result is a (signed) integer.

cvos
“ASCII-STRING” + CVOS (VALUE)

The octal Integer representation of VALUE is
produced as an ASCII String with leading zeroes
omitted (unless WIDTH has been set to some
negative value by SETFORMAT. No “-” will be
used to indicate negat ive numbers. For
instance, -5 will be r e p r e s e n t e d a s
“777777777773”.

NOTE: All type conversion routines, including
those t h a t S E T F O R M A T a p p l i e s t o , a r e
performed at compile time if their arguments
are constants. However, Setformat does not
have its effect until execution time. Therefore,
CVS, CVOS, CVE, CVF, and CVG of constants will
have. no leading zeros and 7 digits (if any)
following the decimal point.

GETFORMAT

GETFORMAT (-@WIDTH, (aDIGITS)

cvo
VALUE + CVO (“ASCII,STRING”)

This function is the same as CVD except that
the input characters are deemed to represent
Octal values.

The WIDTH and DIGIT settings specified in the
l a s t S E T F O R M A T c a l l a r e r e t u r n e d i n t h e
appropriate reference parameters.

4 6

SAIL -

CVE, CVF, CVG

“STRING” +- CVE (VALUE);
“STRING” + CVF (VALUE);
“STRING” + CVG (VALUE)

Real number output is facilitated by means of
o n e o f t h r e e f u n c t i o n s C V E , C V G , o r C V F ,
corresponding to the E, G, and F formats of
FORTRAN IV. Each of these functions takes as
argument a real number and returns a string.
T h e f o r m a t o f t h e s t r i n g i s c o n t r o l l e d b y
another function SETFORMAT (WIDTH, DIGITS)
(see page 46) which is used to change WIDTH
from zero and DIGITS from 7, their initial values.
WIDTH specifies the minimum string length. If
WIDTH is ,positive leading blanks will be inserted
and if negative leading zeros will be inserted.

T h e f o l l o w i n g table indicates the str ings
returned for some typical numbers. _ indicates
a space and it is assumed that WIDTH+10 and
DIGITS+3.

CVF CVE cvc
, 8 8 8 -. 188c-3, -. 188~3,
,881 _. 188@-2, _. 188e-2,
.818 -4 1886-1, -. 188~~1,
,188 _. l e e - -I 188

- 1 . 8 8 8 _. 18811, -1. ee-
- 1 8 . 8 8 8 -. 188e2, ,18.8-
~188,888 _. 188tz3, ,188. z
,1888.888 _. 188e4, _. 188~4,
J8888.888 _. 188~5, -. 188~5,

,188888.888 -. 188e6, -* 188e6,
-1888888,888 _. 188~7~ -. 18867,
-1888888.888 --. 188~7, --. 188~7,

The f i rs t character ahead of the number is
either a blank or a minus sign. With WIDTH+-10
plus and minus 1 would print as:

CVF CVE CVG
-88881.888 ,8.188~1- ,81.88-
-88881.888 -8.188~1, -81.88-

All numbers are accurate to one unit in the
eighth digit. If DIGITS is greater than 8, trailing
zeros are inc luded; i f less than e ight , the
number is rounded.

EXECUTION TIME ROUTINES

CVASC, CVASTR, CVSTR -

VALUE + CVASC (“STRING”);
1 “STRING” + CVASTR (VALUE);

“STRING” + CVSTR (VALUE)

These routines convert between a Sail String
and an integer containing 5 ASCII characters
left justified in a 36-bit word; the extra bit is
m a d e z e r o (C V A S C) o r i g n o r e d (C V A S T R ,
CVSTR). CVASC converts from String to ASCII.
Both CVSTR and CVASTR convert from a word
of ASCII to a string. CVSTR always returns a
str ing of length f ive , whi le CVASTR stops
converting at the first null (‘0) character.

CVASTR GVASC (“ABC”)) is “ABC”
CVSTR WASC (“ABC”)) is “ABC” & 0 & 0

CVGSTR, CVSIX, CVXSTR -

1 “STRING” + CV6STR (VALUE);
VALUE + CVSIX (“STRING”);
“STRING” + CVXSTR (VALUE)

The routines CVGSTR, CVSIX, and CVXSTR are
the SIXBIT analogues of CVASTR, CVASC, and
CVSTR, respectively. The character codes are
converted, ASCII in the String * SIXBIT in the
integer . CVXSTR a lways returns a s t r ing of
length six, while CVGSTR stops converting upon
reaching a null character.

CVGSTR (CVSIX (“XYZ”)) is ‘XYZ”, not “XYZ *.
CV6STR (CVSIX (“X Y 2”)) is “X”, not “X Y 2” or “XYZ”.

7.2 String Manipulation Routines

EQU

VALUE + EQU (“STRI”, “STR2”)

The value of this function is TRUE if STRl and
STR2 are equal in length and have identically
the same characters in them (in the same
order). The value of EQU is FALSE otherwise.

4 7

EXECUTION TIME ROUTINES

I LENGTH

VALUE + LENGTH (“STRING”)

LENGTH is always an integer-valued function. If
the argument is a Str ing, i ts length is the
number of characters in the string. The length
of an algebraic expression is always 1 (see
page 23). LENGTH is usually compiled in line.

LOP

VALUE + LOP (~AISTRINGVAR)

The LOP operator applied to a String variable
removes the first character from the String and
returns it in the form given in page 23 above.
The String no longer contains this character.
LOP applied to a null String has a zero value.
LOP is usually compiled in line. LOP may not
appear as a statement.

I SUBSR, SUBST

“RSLT” t SUBSR (“STRING”, LEN, FIRST);
“RSLT” + SUBST (“STRING”, LAST, FIRST)

These routines are the ones used for
performing substring operations. SUBSR (STR,
L E N , F I R S T) i s STR[FlRST F O R L E N] a n d
S U B S T (S T R , L A S T , F I R S T) i s STR[FIRST T O
LAST).

7.3 Liberation-from-Sail Routines (TYMSHARE only.) Like CALL, only CALLI.

CODE

RESULT + CODE (INSTR, @ADOR)

T h i s f u n c t i o n i s e q u i v a l e n t t o t h e F A I L
statements:

EXTERNAL *SKIP. ;DECLRRE RS -SKIP, IN SAIL
SETOH .SKIP. jASSUHE SKIP
HOVE - 8,INSlR
RDDI 8,cADDR
XC1 8
SEfttl *SKIP. IDIDN'T SKIP
RETURN (1)

SAIL

In other words, i t executes the instruct ion
formed by adding the address of the ADDR
variable (passed by reference) to the number
INSTR. Before the operation is carried out, AC1
is loaded from a special cell (initially 0). AC1 is
returned as the result, and also stored back
into the special cell after the instruction is
executed. The global variable -SKIP, (SKIP: in
DOT or FAIL) is FALSE (0) after the call if the
e x e c u t e d i n s t r u c t i o n d i d n o t s k i p ; T R U E
(currently -1) if it did. Declare this variable as
EXTERNAL INTEGER -SKIP, if you want to use
it. ’

RESULT + CALL (VALUE, “FUNCTION”)

This function is equivalent to the FAIL
statements:

EXTlRNAL ,SKIP,
SETOtl .SKIP,
tlOVE 1,VRLUE
CALL 1,tSIXBIT /FUNCTION/I
SETtfl .SKIP. ;DID NOT SKIP
RETURN (REGISTER 1)

TENEX users should see more on CALL, page
80.

RESULT + CALLI (VALUE, FUNCTION)

USERCON

USERCON (@INDEX, @VALUE, FLAG)

This function allows inspection and alteration of
the “User Table”. The user table is a lways
loaded with your program and contains many
interesting variables. Declare an index you are
interested in as an External In teger (e .g . ,
EXTERNAL INTEGER REMCHR). This will, when
loaded, give an address which is secretly a
small Integer index into the User Table. When
passed by reference, this index is available to

4 8

SAIL- EXECUTION TIME ROUTINES

USERCON. T h e n a m e s a n d m e a n i n g s o f t h e
various User Table indices can be found in the
file HEAD, wherever Sail compiler program text
files are sold.

USERCON always returns the current value of
the appropriate User Table entry (the Global
U p p e r S e g m e n t T a b l e i s u s e d i f F L A G i s
negative and your system knows about such
things). If FLAG is odd, the contents of VALUE
before the call replaces the old value in the
selected entry of the selected table.

By now the incredible danger of this feature
m u s t b e a p p a r e n t t o y o u . B e s u r e y o u
understand the ramifications of any changes
you make to any User Table value.

GOGTAB
Direct access to the user table can be gained
b y d e c l a r i n g EXTERNAL INTEGER ARRAY
GOGTAB[O:n> The clumsy USERCON linkage is
obsolete.

The symbolic names of all GOGTAB entries can
b e o b t a i n e d b y r e q u i r i n g SYS:GOGTAB,DEF
(<SAIL>GOGTAB.DEF on TENEX) as a source file.
This file contains DEFINES for all of the user
table entries.

USERERR

USERERR (VALUE, CODE, “MSG”,
“RESPONSE”(NULL))

USERERR generates an error message. See
p a g e 1 3 8 f o r a d e s c r i p t i o n o f t h e e r r o r
message format. MSG is the error message that
is printed on the teletype or sent to the log
f i le . I f CODE - 2, VALUE is printed in decimal
on the same line. Then on the next l ine the
“Last SAIL call” message may be typed which
indicates where in the user program the error
occurred. If CODE is 1 or 2, a “4” will be typed
and execution will be allowed to continue. If it
is 0, a “?” is typed, and no continuation will be
permitted. The string RESPONSE, if included in
the USERERR call, will be scanned before the
input buffer is scanned. In fact, if the string
RESPONSE satisfies the error handler, the input
buffer will not be scanned at all. Examples:

USERERR (0, 1, “LINE TOO LONG”); Gives
error message end rllows continuation.

USERERR (0, 1, NULL, “QLA”); Resets mode
of error handier to Quiet, Logging, end
Automrtic cohtinuation. Then continues.

ERMSBF

ERMSBF (NEWSIZE)

This routine insures that error messages of
NEWSIZE characters can be handled. The error
message buf fer is in i t ia l ly 256 characters ,
which is sufficient for any Sail-generated error.
USERERR c a n g e n e r a t e l o n g e r m e s s a g e s ,
however.

EDFILE

EDFILE (“FILENAME”, LINE, PAGE, BITS(O))

(Not on TENEX.) Exits to an editor. Which editor
is determined by the bits which are on in the
second parameter, LINE. If bit 0 or bit 1
(600000,,0 bits) is on, then LINE is assumed to
be ASCID and SOS is called. If neither of these
bits is on, then LINE is assumed to be of, the
form attach count,,sequential line number and E
is called. PAGE is the binary page number.
BITS defaults to zero and controls the editing
mode.

0 edit
1 no directory (as in /N)
2 rordonly be in /R)
4 create (as in /O

In’ addition, the accumulators are set up from
INIACS (see below) SO that the E command 0cX
RUN wi l l run the dump f i le f rom which the
current program was gotten. [Accumulators 0
(fi le name), 1 (extension), and 6 (device) are
l o a d e d f r o m t h e c o r r e s p o n d i n g v a l u e s i n
INIACS.]

INIACS

I
The contents of locations 0-‘17 are saved i n

4 9

EXECUTION TIME ROUTINES SAIL

block INIACS when the core image is started for
the f i rs t t ime. Declare INIACS as an external
integer and use S T A R T - C O D E o r
MEtvlORY[LOCATlON(lNlACS)+n] to reference this
block.

programmer n u m b e r s a r e r e t u r n e d i n t h e
respective reference parameters. Any
unspeci f ied port ions of the F ILE,SPEC wi l l
result in zero values. The global var iable
-SKIP- wi l l be 0 i f no errors occurred, non-
zero if an invalid fi le name specification is
presented.

7.4 Byte Manipulation Routines

FILEINFO

LOB, DPB, etc.

VALUE + LOB (BYTE-POINTER);
VALUE + ILDB (mr BYTE-POINTER);
DPB (BYTE, BYTE-POINTER);
IDPB (BYTE, @ BYTE,POINTERh
IBP (a BYTE-POINTER)

LOB, ILDB, DPB, IDPB, and IBP are Sail
constructs used to invoke the POP-10 byte
loading instructions. The arguments to these
functions are expressions which are interpreted
as byte pointers and bytes. In the case of ILDB,
I D P B , a n d IBP, y o u a r e r e q u i r e d t o u s e a n
algebraic v a r i a b l e a s argument as the
byte-pointer, so that the byte pointer (i.e. that
algebraic variable) may be incremented.

POINT

VALUE + POINT (BYTE SIZE,
@EFFECTIVE ADDRESS, LAST BIT NUMBER)

POINT returns a byte pointer (hence it is of
type integer). The three arguments correspond
exactly to the three arguments to the POINT
pseudo-op in FAIL.

7.5 Other Useful Routines

VALUE + CVFIL (“FILE,SPEC”, @EXTEN, sPPN)

FILE,SPEC has the same form as a file name
specification for LOOKUP or ENTER. The SIXBIT
for the file name is returned in VALUE. SIXBIT
v a l u e s f o r t h e e x t e n s i o n a n d project-

5 0

FILEINFO (@INFOARRAY)

FILEINFO fills the 6-word array INFOARRAY with
the following six words from the most recent
LOOKUP, ENTER, or RENAME:

FILENAME
EXTJPhidrte2 (15)drte 1
(9)prot (4hiode (11 hime (12)lodrte2
negative swapped word count

I 0 (unless opened in magic mode)
0

See [SysCall]; TENEX users should use JFNS
instead.

ARRINFO

VALUE * ARRINFO (ARRAY, PARAMETER)

ARRINFO (ARRAY, -1)

ARRINFO (ARRAY, 0)

ARRINFO (ARRAY, 1)

ARRINFO (ARRAY, 2)

ARRINFO (ARRAY, 3)

ARRINFO (...

is the number of
d i m e n s i o n s f o r t h e
array. This number is
n e g a t i v e f o r S t r i n g
arrays.

is the total size of the
array in words.

is the lower bound for
the first dimension.

is the upper bound for
the first dimension.

is the lower bound for
the second dimension.

etc.

SAIL

ARRBLT

ARRBLT (aDEST, @SOURCE, NUM)

NUM words are transferred (using BLT) from
consecutive locations starting at SOURCE to
consecutive locations starting at DEST. NO

bounds checking is performed. This function
does not work well for String Arrays (nor set
nor list arrays).

ARRTRAN

ARRTRAN (DESTARR, SOURCEARR)

This ’ function copies information from
SOURCEARR to DESTARR. The transfer starts at

. the first data word of each array. The minimum
of the sizes of SOURCEARR and DESTARR is the
number of words transferred.

ARRCLR

ARRCLR (ARRAY, VALUE(O))

This routine stores VALUE into each element of
ARRAY. The most common use is with VALUE
omitted, which clears the array; i.e., arithmetic
arrays get filled with zeros, string arrays w i t h

. N U L LS , itemvar arrays with ANYs,
record-pointer arrays with NULL-RECORD. One
may use ARRCLR with set and list arrays, but
t h e s e t and l is t space wi l l be lost (i .e . , un-
garbage-collectible). Do not supply anything
other than. 0 (0, NULL, PHI, NIL, NULL-RECORD)
for VALUE when clearing a string, set, list, or
record-pointer ar ray unless you know what
y o u a r e d o i n g . U s i n g a real value for an
itemvar array is apt to cause strange results.
(If you use an integer then ARRAY will be filled
with CVI (value).)

IN-CONTEXT

VALUE t IN-CONTEXT (VARI, CONTXT)

IN-CONTEXT- is a boolean which tells one if the
specified variable is in the specified context.
VARI may be any variable, array element, array
name, o r L e a p v a r i a b l e . I f that var iable ,

EXECUTION.TIME ROUTINES

e l e m e n t o r a r r a y w a s REMEMBERed i n t h a t
context, IN-CONTEXT wi l l return True.
IN-CONTEXT will also return true if VARI is an
a r r a y e l e m e n t a n d t h e w h o l e a r r a y w a s
R e m e m b e r e d i n t h a t c o n t e x t (b y u s i n g
REMEMBER <array-name>). On the other hand,
if VARI is an array name, then IN-CONTEXT will
return true only if one has Remembered. that
array with a REMEMBER <array-name>.

CHNCDB

VALUE + CHNCDB (CHANNEL)

(Not on TENEX.) This integer procedure returns
the address of the block of storage which Sail
uses to keep track of the specified channel. It
i s p r o v i d e d f o r t h e b e n e f i t o f a s s e m b l y
language procedures that may want to do I/O
inside some fast inner loop, but which may want
to live in a Sail core image & use the Sail OPEN,
etc. I

7.6 Numerical Routines

I These numerical routines are new as
p r e d e c l a r e d runtimes i n S a i l . T h e r o u t i n e s
themselves are quite standard.

The s tandard t r igonometr ic funct ions. ASIN,
A C O S , ATAN a n d ATAN r e t u r n r e s u l t s i n
radians. The ATAN call takes arc-tangent of
the quotient of its arguments; in this way, it
correctly preserves sign information.

REAL PROCEDURE SIN (REAL RADIANS);
REAL PROCEDURE COS (REAL RADIANS);
REAL PROCEDURE SIN0 (REAL DEGREES);
REAL PROCEDURE COSD (REAL DEGREES);

REAL PROCEDURE ASIN (REAL ARGUMENT);
REAL PROCEDURE ACOS (REAL ARGUMENT);
REAL PROCEDURE ATAN (REAL ARGUMENT);
REAL PROCEDURE ATANP (REAL NUM,DEN)

The hyperbolic trigonometric functions.

REAL PROCEDURE SINH (REAL ARGUMENT);
REAL PROCEDURE COSH (REAL ARGUMENT);
REAL PROCEDURE TANH (REAL ARGUMENT)

The square-root function:

51

EXECUTION TJME ROUTINES

REAL PROCEDURE SORT (REAL ARGUMENT)

A p s e u d o - r a n d o m n u m b e r g e n e r a t o r . T h e
argument specifies a new value for the seed (if
the argument is 0, the old seed value is used.
Thus to get differing random numbers, this
argument .should b e z e r o .) Results are
normalized to lie in the range [O,l].

REAL PROCEDURE RAN (INTEGER SEED)

Logarithm and exponentiation functions. These
functions are the same ones used by the Sail
exponentiation operator. The base is e
(2 . 7 1 8 2 8 1 8 2 8 4 5 9 0 4) . T h e l o g a r i t h m t o t h e
base 10 of e is 0.4342944819.

REAL PROCEDURE LOG (REAL ARGUMENT);
REAL PROCEDURE EXP (REAL ARGUMENT)

These functions may occasionally be asked to
compute numbers that lie outside the range of
legal floating-point numbers on the PUP-lo. In
these cases, the routines issue sprightly error
messages that are continuable.

OVERFLOW
In order to better perform their tasks, these
routines enable the system interrupt facility for
floating-point overflow and underflow errors.
If an underflow is detected, the results are set

~ to 0 (a feat not done by the PDP-10 hardware,
alas). Be aware that such underflow fixups will
be done to every underflow that occurs in your
program. For further implementation details,
see the section below.

If you would like to be informed of any
numerical exceptions, you can call the runtime:

TRlGlNl (LOCATION (simple-procedure-name))

E v e r y f l o a t i n g - p o i n t e x c e p t i o n t h a t i s n o t
e x p e c t e d b y t h e i n t e r r u p t h a n d l e r (t h e
numerical routines use a special convention to
indicate that arithmetic exception was expected)
will cause the specified simple procedure to be
called. This procedure may look around the
w o r l d a s d e s c r i b e d f o r ‘ e x p o r t ’ i n t e r r u p t
handlers, page 120. If no TRIGINI call is done,
t h e i n t e r r u p t r o u t i n e w i l l s i m p l y d i s m i s s
unexpected floating-point interrupts.

arithmetic routines all have a “S” appended to
the end. Thus, SIN has the entry point SINS,
etc. WARNING: If a program plans to use the
Sail intrinsic numerical routines, it should NOT
include external declarations to them, since this
wi l l probably cause t h e F O R T R A N l i b r a r y
routines to be loaded.

OVERFLOW IMPLEMENTATION
This section may be skipped by all but those
interested in in ter fac ing number crunching
assembly code (where overflow and underflow
a r e e x p e c t e d t o b e a p r o b l e m) w i t h S a i l
r o u t i n e s .

The Sai l ar i thmet ic in terrupt rout ines f i rs t
check to see if the interrupt was caused by
floating exponent underflow. If it was, then the
result is set to zero, be it in an accumulator,
memory, or both. T h e n i f t h e a r i t h m e t i c
instruction that caused the interrupt is followed
by a JFCL, the AC field of the JFCL is compared
with the PC flag bits to see if the JFCL tests
for any of the flags that are on. If it does,
t h o s e f l a g s a r e c l e a r e d a n d t h e p r o g r a m
proceeds at the effective address of the JFCL
(i.e., the hardware is simulated in that case).
N o t e t h a t n o i n s t r u c t i o n s m a y i n t e r v e n e
between the interrupt-causing instruction and
the JFCL or the interrupt routines will not see
the JFCL. They only look one instruction ahead.
N o t e t h a t i n a n y c a s e , f l o a t i n g e x p o n e n t
underflow always causes the result to be set to
zero. There is no way to disable that effect.

SAIL

ENTRY POINTS
In order to avoid confusion (by the loader) with
older trig packages, the entry points of the Sail

5 2

c SAIL-
.

8 . 1 Syntax

SECTION 8

PRINT

<print-statement>
::- PRINT (<expression-list>)
::- CPRINT (<integer-expression> ,

<expression-list>)

8 . 2 Semant its

The new constructs PRINT and CPRINT are
conveniences for handling character output.
Code which formerly looked like

OUTSTR (“The values are ” Q CVS (I) & ” and ” t
CVG (XI & ” for itrm ” Q CVIS (IT, JUNK));

may now be written

PRINT (“The vrlu~r are “, 1, X, * for itom “, IT);

The f i rs t expression in <expression- l is t> is
evaluated, formatted as a string, and routed to
the appropriate destination. Then the second

. expression is evaluated, formatted, and
dispatched; etc. (If an expression is an
assignment expression or a procedure call then
side effects may occur.)

DEFAULT iOl?MATS
S t r i n g e x p r e s s i o n s a r e s i m p l y s e n t to t h e
output routine. Integer expressions are first
sent to CVS, and Real expressions are passed
to CVG, the current SETFORMAT parameters are
used. Item expressions use the print name for
the i tem i f one ex is ts , o therwise ITEM!nnnn,
where nnnn is the item number. Sets and lists
show the i r 4tem c o m p o n e n t s s e p a r a t e d b y
commas. Sets are surrounded by single braces
and lists by double braces. PHI and NIL are
p r i n t e d f o r t h e e m p t y s e t a n d e m p t y l i s t
respectively. Record pointers are formatted as
the name of the record class, followed by a “.“,
followed by the (decimal) address of the record.
NULL!RECORD is printed for the empty record.

If the default format is not satisfactory then the
user may give a function call as an argument.
For example,

PRINT

PRINT (CVOS (I));

will print I in octal, since CVOS is called first.
(The expression CVOS (I) is of course a String
expression,) Wizards may also change the
default formatting function for a given syntactic
type.

DESTINATIONS
CPRINT interprets <integer-expression> as a
Sail channel number and sends all output to
that channel. The following two statements are
funct ional ly equiva lent :

CPRINT (WAN, “The vrluor ara “, I, ” and “, XI;

O U T (MAN, “Tk vrlurr are “&CVS (I)&” and “&CVG (XI);

PRINT initially sends all output to the terminal
but can a lso d i rect output to a f i le or any
combination of terminal and/or file. The modes
of PRINT are (dynamical ly) establ ished and
queried by SETPRINT and GETPRINT.

SETPRINT, GETPRINT

SETPRINT (“FILE-NAME”, “MODE”);
“MODE” + GETPRINT

H e r e M O D E i s a s i n g l e c h a r a c t e r w h i c h
represents the destination of PRINT output.

MODE MEANING

1, ,IT the Terminal gets all PRINT
output. If an output fi le is open
then close it. “T” is the mode in
which PRINT is initialized.

,I *F File gets PRINT output. If no file
is open then open one as
described below.

0 n
6 Both terminal and file get PRINT

output . I f no f i le is open then
open one as described below.

0, I@N Neither the file nor the terminal
gets any output. If a file is open
then close it.

Suppress all output, but open a
file if none is open.

5 3

PRINT- SAIL

“0” a file is Open, but the terminal is
get t ing a l l output . I f no f i le is
open then open one as described
below.

“C” t h e t e r m i n a l g e t s o u t p u t , b u t
ignore whether or not a fi le is
open and whether or not i t is
getting output.

,I III t e r m i n a l d o e s n o t g e t o u t p u t .
Ignore whether or not a fi le is
open and whether or not fi le is
getting any output.

The first 6 possibilit ies represent the logical
s t a t e s o f t h e P R I N T s y s t e m a n d a r e t h e
characters which GETPRINT can return. The “C”
and “I” modes turn terminal output on and off
without disturbing anything else. The PRINT
statement is initialized to mode “T” -- print to
Terminal. Modes ‘IT”, “F”, and “B” are probably
the most useful. The other modes are included
for completeness and allow the user to switch
between various combinations dynamically.

If SETPRINT is called in such a way that a file
has to be opened -- e.g., mode “F” and no file is
open -- then FILE-NAME will be used as t h e
name of the output file. If FILE-NAME is NULL
then the fi lename will be obta ined f rom t h e
terminal.

. SETPRINT (N U L L , “F”);

first types the message

Fib for PRINT putput l

and uses the response as the name of a file to
open. On TENEX, GTJFN with recognition is
used; on TOPS-10 and its variants the filename
i s r e a d w i t h I N C H W L . T h e f i l e o p e n e d b y
SETPRINT wi l l be c losed when the program
terminates by falling through the bottom. It will
also b,e closed. if the user calls SETPRINT with
some mode that closes the file -- e.g., “T” will
close an output file if one is open.

SETPRINT a n d GETPRINT a r e r e l a t e d o n l y t o .
PRINT; they have no effect on CPRINT.

S I M P L E U S E -
Here are a few examples of common output
situations.

5 4

1) PRINT to TERMINAL. Simply use PRINT; do
not bother with SETPRINT.

2) PRINT to F ILE. Cal l SETPRINT (NULL, “F”);
and type the name of the output file when
it asks.

3) PRINT to FILE and TERMINAL. At the
beginning of the program ca l l SETPRINT
(NULL, “B”); and type the name when asked.

4) PRINT to FILE always and sometimes also to
TERMINAL. Use SETPRINT (NULL, “B”); and
give the name of the file when it asks. This
sets output to both the terminal and the
file. Then to ignore the terminal (leaving
the file alone), call SETPRINT (NULL, “I”); To
resume output at the terminal use SETPRINT
{NULL, “Cl’); This is useful for obta in ing a
cleaned-up printout on the fi le with error
messages going to the terminal.

CAVEATS
Trying to exploit the normal Sail type
conversions will probably lead to trouble with
PRINT and CPRINT. Pr int ing s ingle ASCI I
characters is a particular problem.

OUTSTR (’ 14);

prints a form-feed onto the terminal , but

PRINT (‘14);

pr ints “12”. The reason, of course, is the
defaul t format t ing of in tegers by PRINT or
CPRINT. This problem is particularly severe
with macros that have been defined with an
integer to represent an ASCII character. For
example,

DEFINE TAB.“’ 1 1 I’-I
PRINT (TAB);

will print “9”. The solution is to define the
macro SO that it expands to a STRING constant
rather than an integer.

DEFINE TAB& “>i o r
DEFINE TAB=&1 1 & NULL)>;

Also, remember that the f i rs t argument to
CPRINT is the channel number.

SAIL

FOR WIZARDS ONLY
All output going to either the PRINT or CPRINT
statements can be t rapped by set t ing usor
table entry SSPROU to the address of a SIMPLE
procedure that has one string and one integer
argument.

SIMPLE PROCEDURE MYPRJNT
(INTEGER WAN; STRING Sk

BEGIN . . END;

GO’GTAB(S$PROU) c LOCATION (MYPRINT);

T h e C H A N a r g u m e n t i s e i t h e r t h e C H A N
argument for CPRINT, or -1 for PRINT. If this
t rap is set then a l l output f rom PRINT and
CPRINT goes through the user routine and is
not printed unless the user invokes OUT or
OUTSTR from within the trap routine itself.

T o t r a p t h e f o r m a t t i n g f u n c t i o n f o r a n y
s y n t a c t i c t y p e t h e u s e r s h o u l d s e t t h e
appropriate user table address to the location
of a function that returns a string and takes as
an argument the syntactic type in question. TO

print integers in octal , preceded by I’“, use

SIMPLE STRING PROCEDURE MYCVOS (INTEGER I);
RETURN t”‘” I CVOS (I));

_ GOGTAB[S$FINT) c LOCATlON WCVOS);

The names for the addresses in the user table
associated with each formatting function are:

INDEX TYPE

$SFINT INTEGER
I $SFREL REAL

SSFITM ITEM
SSFSET SET
t$FLST LIST
MFSTR STRING 0

S$FREC RECORD,POINTER

T o r e s t o r e a n y f o r m a t t i n g f u n c t i o n t o t h e
default provided by the PRINT system, tore the

-’ appropriate entry of the user table.

PRINT

5 5

MACROS AND CONDITIONAL COMPILATION SAIL

SECTION 9

MACROS AND CONDITIONAL COMPILATION.

9.1 S y n t a x

<define>
::= DEFINE <def,list> ;
::- REDEFINE <def,list> ;
: : = EVALDEFINE <def,list> ;

I ::- EVALREDEFINE <def,list> ;

<def,list>
::- <def>
::= <defJist> , <def>

<def>
::- <identifier> - <macro-body>
::- <identifier> (<id-list>) -

<macro-body>
’::- <identifier > <string-constant> =

<macro-body>
::- <identifier> (<id-list>)

<string-constant> - <macro-body>

<macro-body>
::- <delimited-string>
::= <constant-expression.
::= <macro-body> & <macro-body>

<macro-call> I
::= <macro-identifier>
::= <macro-identifier>

(<macro,param,list>)
::= <macro-identifier> <string-constant>

(<macroJaram,list>)

<macfo-identifier>
::- <identifier>

<macro,param,list>
::- <macro,param>
::- <macro,param,list> , <macrogaram>

<cond,comp,statement>
::- <condi t ional,c.c.s.>
::- <while,c.c.s.>

5 6

::- <for c c s >-*,a
::- <for,list,c.c.s.>
::- <case,c.c.s.>

<conditional,c.c.s.>
::- IFC <constant-expression> THENC

<anything> ENDC
::- IFC <constant-expression> THENC

<anything> ELSEC <anything> ENDC
::- IFCR <constant-expression> THENC

<anything> ENDC
::- IFCR <constant-expression> THENC

<anything> ELSEC <anything> ENDC

<while-us.>
::= WMLEC <delimited,expr> D O C

<delimited-anything> ENDC

<for,c.c.s.>
I ::= FORC <identifier> +

<constant-expression> STEPC
<constant-expression> UNTILC
<constant-expression> DOC
<delimited-anything> ENDC

<for,list,c.c.s.>
::- FORLC <identifier> +

(<macro,param,list>) D O C
<delimited-anything> ENDC

<case,c.c.s.>
::= CASEC <constant-expression> OFC

<delimited-anything-list> ENDC

<delimited-anything-list>
::- <delimited-anything>
::- <delimited-anything-list> ,

<delimited-anything>

<assign0
::= ASSIGNC <identifier> - <macro-body> ;

<delimited-string>, <macro,param>,
<deiimited,expr>, <anything> and
<delimited-anything> are explained in the
following text.

SAIL - MACROS AND CONDITIONAL’ COMPILATION

9.2 Delimiters

There are two types of delimiters used by the
Sail macro scanner: macro body delimiters and
macro parameter delimiters. Their usage will
be precisely defined in the sections on Macro
Bodies and Parameters to Macros. Her8 we will
discuss their declaration and scope, which is
very important when using source fi les with
different delimiters (see page 11 to find out
about source files).

Sail initializes both left and right delimiters of
both body and parameter de l imi ters to the
double quote (“). One may change delimiters by
saying

instead of REQUIRE “cP<>” DELIMITERS. This
doesn’t d e a c t i v a t e t h e s t a c k i n g f e a t u r e , i t
merely changes the active delimiters without
stacking them.

To revert to the primitive, initial delimiter mode
where double quotes are the active delimiters,
one may say

REQUIRE NULL DELIMITERS

Null delimiters are stacked in the delimiter stack
in the ordinary REQUIRE “cp<s” DELIMITERS
way. In null delimiters mode, the double quote
character may be included in the macro body or
macro parameter by using two double quotes:

. REQUIRE *cx>” DELIMITERS. DEFINE SOR = “OUTSTR(““SORRY”“);“;

I n t h i s e x a m p l e , t h e l e f t a n d r i g h t b o d y
del imi ters become “c” and “P”, while the left
and right parameter delimiters become “<” and
“a”. Require Delimiters may appear wherever a
statement or declaration is legal. One should
Require Delimiters whenever all but the most
simple macros are going to be used. The first
Require Del imiters wi l l in i t ia l ize the macro
facility; if this is not done, some of the following
conveniences wi l l not ex ist and only very
siImpl8 macros like defining CRLF - “(‘12 & ‘15
)” may be done .

The Nul l Del imi ters mode is essent ia l ly the
macro facility of ancient versions of Sail where
” was t h e o n l y d e l i m i t e r . P r o g r a m s w r i t t e n
ancient in Sail versions will run in Null
Delimiters mode. Null delimiters mode has all
the rules. and quirks of the prehistoric Sail
macro system (the old Sail macro facility is
described in [Swinehart & Sproull], Section 13).
Compatibility with the ancient Sail is the only
reason for Null Delimiters.

Delimiters do not follow block structure. They
persist until changed. Furthermore, each time
new delimiters are Required, they are stacked
o n a s p e c i a l “del imi ters stack”. The old
delimiters may be r8ViV8d by Saying

9.3 Macros

We will delay the discussion of m a c r o s w i t h
parameters unt i l the next sect ion. A macro
without parameters is declared by saying:

REQUIRE UNSTACK-DELIMITERS DEFINE <macro-name> l <macro-body> ;

Thus, each source file with macros should begin
w i t h a Require del imi ters , and end wi th an
Unstack-delimiters. It is impossible to Unstack
o f f t h e b o t t o m o f t h e s t a c k . T h e b o t t o m
e l e m e n t o f t h e s t a c k i s t h e d o u b l e q u o t e
delimiters that Sail initialized the program to. If
y o u U n s t a c k f r o m t h e s e , t h e U n s t a c k w i l l
b e c o m e a n o - o p , a n d t h e d o u b l e q u o t e
del imiters remain t h e d e l i m i t e r s o f y o u r
program. I

O n e m a y c i rcumvent the del imi ter s tacking
feature by saying

REQUIRE *c><>* REPLACE,DELIMITERS

w h e r e <macro-name> is some legal ident i f ier
name (see page 129 for a definition of a legal
identifier name). <macro-body% can be simply
a sequence of Ascii characters delimited by
macro body delimiters, or they can be quite
complex. Once the macro has been defined, the
macro body is substituted for every subsequent
appearance of the macro name. Macros may be
called in this way at any point in a Sail
program, except inside a Comment or a string
constant.

Macro declarations may also appear virtually
anywhere in a S a i l p r o g r a m . W h e n t h e w o r d
DEFINE is scanned by Sail, the scanner traps to
a special production. The Define is parsed, and

5 7

MACROS AND CONDITIONAL COMPILATION SAIL

the scanner returns to its regular mode as if
there had been no def ine there a t a l l . Thus
things like

I t J + 5 + DEFINE CON . ~‘7773; Kt2;....

are perfectly acceptable. However, don’t put a
Define in a string constant or a Comment.

SCOPE
Macros obey b lock s t ructure . Each DEFINE
serves both as a declaration and an assignment
of a macro body to the newly declared symbol.
Two DEFINES of the same symbol in the at the
same lexical level will be flagged as an error.
However, it is possible to change the macro
body assigned t o a m a c r o n a m e w i t h o u t
redeclaring the name by using saying REDEFINE
instead of DEFINE. For example,

BEGIN
. . .

BEGIN

DEFINE SQUAK I cOUTSTR(“OUTER BLOCK”);>;

BEGIN
. . .
REDEFINE SQUAK l cOUTSTR(“INNER BLOCK”);>;

. . .
END;

. . .
SQUAK COMMENT Here the program types

“INNER BLOCK”;
END; COMMENT Here SQUAK is undefined.

If SQUAK were included here, you’d
get the error message

“UNDEFINED IDENTIFIER:SQUAK”;
END *

REDEFINE of a name that has not been declared
in a DEFINE will act as a DEFINE. That is, it will
a l s o d e c l a r e d t h e m a c r o n a m e a s w e l l a s
assigning a body to it.

MACRO BODIES
A Mawo Body may b e

1. A sequence of Asci i characters
preceded by a le f t macro body
delimiter and followed by a right
macro body delimiter.

2. An integer expression that may be
evaluated at compile time.

3. A string expression
evaluated at compile t

that m a y b e
ime.

4. Concatenations of the above.

WARNING: Source file switching inside macros
will not work.

DELIMITED STRINGS
Any sequence of Ascii characters, including ”
may be used as a macro body if they are
properly delimited. The macro body scanner
keeps a count of the number of left and right
delimiters seen and will terminate its scan only
when it has seen the same number of each.
This lets the macro body delimiters “nest” so
that one may include DEFINES i.nside a macro
body. For example,

DEFINE DEF .
cDEFlNE SYM l cSYMBOL>; SYM> i

O n e m a y t e m p o r a r i l y o v e r r i d e t h e a c t i v e
delimiters by including a two character string
before the “-” of the Def ine s ta tement . For
example:

DEFINE LES “41%” l & OSX<BIGGEST A Y>X %;

The first character of the two character string
becomes the le f t de l imi ter , and the second
becomes the right delimiter.

INTEGER COMPILE TIME EXPRESSIONS
Sail tries to do as much arithmetic as it can at
compile time. In particular, if you have an
arithmetic expression of constants, such as

91.504 + (3.1415*8t(9-7))
2 “Sail can convert rtringr”

then the whole expression will be evaluated at
compile time and the resultant constant, in this
case 93.9263610, will be used in your code
instead of the constant expression. Runtirne
functions of constants will be done at compile
time too, if possible. EQU and the conversion
routines (CVS, CVO, etc.) will work.

5 8

SAIL MACROS AND CONDlTlONAi COMPILATION

When an integer compile time expression is
scanned as part of a macro body, it is
immediately evaluated. The integer constant
which results is converted to a character string,
and that character string used for the place in
the macro body of the in teger express ion.
Thus,

DEFINE TTYUUO = ‘51 LSH 27 ; ’

will cause ‘51 LSH 27 to be evaluated, and the
resulting constant, 5 5 0 2 9 2 6 8 4 8 , w i l l b e
converted to the character string 5502926848,
and that character string assigned to the macro
name TTYUUO.

STRING COMPILE TIME EXPRESSIONS
If a compile time expression has the type string
(constant), the macro scanner will evaluate the
expression immediately. However, the string
constant that results will not be converted to
t h e c h a r a c t e r s t r i n g t h a t r e p r e s e n t s t h a t
constant, but to the character string with the
same characters that the string constant had.
Thus, the way to use a macro for string
constants is to delimit the string constant like
this:

DEFINE STRINCON l c”Very long
complex l tring thrt b herd

to typo more then once% ;

However, the automatic conversion of string
. constants to character strings is helpful and

indeed essential for automatic generation o f
identifiers:

D E F M E Nm 1;
COMMENT we will use this like e variable;

DEFINE GENSYM . c
DEFINE SYM . cTEMP-a Q CVS(N);

COMMENT SYM ie defined to be the character
string TEMP,r where l ia an number;

4 REDEFINE N - N+l;
I COMMENT Thir increments N;

SYM 3;
COMMENT At the call of SYM, the character
l tring ie rerd like progrrm text. E.g...;

INTEGER GENSYM, GENSYM, GENSYM, GENSYM;
REAL GENSYM, GENSYM;

COMMENT We have generated 6 identifiers with
unique names, end declared 4 es infegers,

To convert a macro body to a string constant,
one may use C V M S . S i m i l a r l y , a m a c r o
parameter is converted to a string constant by
CVPS.

<string constant> c CVMS (<macro name>);
string conrtrnt c CVPS (*macro parameter name>)

A string that has the exact same characters as
the macro body will be returned. For example:

DEFINE A = cB P CD;
DEFINE ABC . CVMS (A) & c & Da;
COMMENT ABC now stands for the text B & C & D;

HYBRID MACRO BODIES
When two delimited strings are concatenated,
the result is a longer delimited string. “&” in
compile time expression behaves the same way
it behaves in any expression. When a compile
time expression is concatenated to a delimited
character string in a macro body, the result is
exactly the result one would get if the delimited
character string were a string constant, except
that the result is a delimited character string.
For example:

DEFINE N . 1;
DEFINE M = 2;
DEFINE SYM = CVS(NtM + Nt2) & c-SQRT(N*M+ 1)a;
DEFINE SYM 1 l c3-SQRT(N*M+ 1)a;

Here SYM is exactly the same as SYMl.

9.4 Macros with Parameters

O n e d e f i n e s a m a c r o w i t h p a r a m e t e r s b y
s p e c i f y i n g t h e f o r m a l p a r a m e t e r s i n a l i s t
following the macro name:

DEFINE MAC (A, B) l clF A THEN B ELSE ERR+ 1 ;a;

One calls a macro with parameters by including
a list of delimited character strings that will be
s u b s t i t u t e d f o r e a c h o c c u r r e n c e of the
corresponding formal in the macro body. For
example,

5 9

MACROS AND CONDITIONAL COMPILATION

COMMENT we arrumo that “<” and ‘I>” are the
parameter delimiters at this point;

MAC (<BYTES LAND (BITMASK + ‘2000)>, <
BEGIN

WWDAT c FETCH (BYTES, ENVIRON);
COLOR(WWDAT J c ‘2000;

E N D >)

SAIL

having ‘177, n for each appearance of the nth
formal parameter in the body.

9.5 Conditional Compilst ion

The compi le t ime equiva lents of the Sai! IF,
WHILE, FOR and CASE statements are

expands to

IF BYTES LAND (BITMASK + ‘2000) THEN
BEGIN

WWDAT c FETCH (BYTES, ENVIRON);
COLOR[WWDAT] c ‘2000;

END
ELSE ERRt I ;

Parameter delimiters nest. Furthermore, if no
delimiters are used about a parameter, nesting
counts are kept of “()“, “[]“, and “0” character
pairs. The parameter scan will not terminate
until the nesting counts of each of the three
pai rs is zero . One may temporarily override
the active parameter delimiters by including a
two character string ahead of the parameter
list in the macro call:

M A C -3” 0BYTES > ‘20003, cMATCH(BYTES)3)

Formal parameters may not appear in compile
time expressions that are used to specify macro
bodies. This is qui te natura l : compi le t ime
expressions must be eva luated as they are
scanned, bwt the value of a formal parameter

~ isn’t known until later. However, if the macro
body is a hybrid of expressions and delimited
character strings, then formal parameters may
appear in the delimited string parts.

W h e n d o i n g a CVMS on a macro with
parameters, use only the macro name in the
ca l l ; the parameters are unnecessary . The
str ing re turned wi l l have the two character
st r ings “Xl”, ‘*X2”, etc. (here X stands for the
Ascii character ‘ 1 7 7) w h e r e t h e f o r m a l
parameters were in the macro body. A “11”
will appear wherever the first formal parameter
o f t h e f o r m a l p a r a m e t e r l i s t a p p e a r i n t h e
macro body, a “X2” will appear wherever the
second parameter appeared, etc. The
unfortunate appearance of the Ascii character
‘177 in CVMS-generated strings is a product of
the representation of macro bodies as strings
e n d i n g i n ‘ 1 7 7 , ‘ 0 (w h i c h CVMS r e m o v e s) ,

IFC <CT expr> THENC <anything> ENDC

IFC <CT expr> THENC <anything> ELSEC
<anything> ENDC

WHILEC c&T expr>> DOC c<anything>> ENDC

FORC <CT variable> t <CT expr> STEPC <CT expr>
UNTILC <CT expr> DOC c<rnything>> ENDC

FORLC <CT variable> c (<macro param>, . . . ,
(macro param>) DOC c<anything>s ENDC

CASEC <CT expr> OFC ccanythingq wanythingq
. . . , c<onything>> ENDC

where <CT expr> is any c o m p i l e t i m e
expression. <CT expr> could itself include IFCs,
FORCs or whatever. <CT variable> is a macro
name such as N from a define such as DEFINE N
= MUMBLE; <macro param> is anything that is
delimited like a macro parameter. <anything>
can be anything one could want in his program
at that point , inc luding Def ines and other
conditional compilation statements. The usual
care must be taken with nested IFCs so that the
ELSECs match the desired THENCs. The “c” and
“9‘ c h a r a c t e r s a b o v e a r e t o s t a n d f o r t h e
current MACRO BODY DELIMITER pair.

T h e s e m a n t i c s a r e e x a c t l y t h o s e o f t h e
corresponding runtime s t a t e m e n t s , w i t h o n e
exception. When the list to a FORLC is null (i.e.
i t l o o k s l i k e “()” 1, t h e n t h e < a n y t h i n g > i s
inserted in the compilation once, with the <CT
variable> assigned to the null macro body.

Situations frequently occur where the false
part of an IFC must have the macros in it
expanded in order to de l imi t the fa lse par t
correctly. For example,

6 0

SAIL-

DEFINE DEBUG-SELECT .
clFC DEBNUM . 2 THENC si

DEFINE DEBUG-END l
cELSEC OUTSTR (“DEBUG POINT”) ENDC>;

Dobug,select
OUTSTR (“DEBUG POINT e” & CVS (DBN));

Debug-and

If DEBNUM is not 2, then the program must
expand the macro Debug-end in order to pick
up the ELSEC that terminates the false part of
the conditional. The expansion is only to pick
up such tokens -- the text of the false part is
not sent to the scanner as the true part is. In
order t0 avoid such expansion, one m a y u s e
IFCR (the R stands for “recursive”) instead of
IFC.

A s a n a d d e d f e a t u r e , w h e n d e l i m i t e r s a r e
required about an <anything> in the above
(such constructs are named
<del imi ted-anything> in the BNF) , one may
s u b s t i t u t e a concatenat ion of constant
expressions and delimited strings. This is just
like a macro body, except the concatenation
MUST contain at least one delimited string,
thereby forcing the result of the concatenation
to- be a delimited string, rather than a n a k e d
expression.

As a further added feature,

IFC <CT l xprs THENC c<rnything>s ELSEC
c<rnything>> ENDC

m a y b e s u b s t i t u t e d i n FORCs, FORLCs, a n d
WHlLECs for the <anything> following DOC.

NOTE: In a WHILEC, the expression must be
del imi ted wi th the appropr ia te macro body
delimiters (hence the construct
<delimited,expr> in the BNF).

.

9.6 Type Determination at Compile Time

To ascertain the type of an identifier at compile
time, on% m a y u s e t h e i n t e g e r f u n c t i o n
DECLARATlON(<identifier>). T h i s r e t u r n s a n
integer with bits turned on to represent the
t y p e o f i d e n t i f i e r . E x a c t l y w h a t t h e b i t s
r e p r e s e n t i s a d a r k s e c r e t a n d c h a n g e s

MACROS AND CONDITIONAL’ COMPILATION

periodically anyway. The best way to decode
t h e i n t e g e r r e t u r n e d b y D e c l a r a t i o n i s t o
compare it to the integer r e t u r n e d b y
CHECK-TYPE (<a string of Sail declarators>). A
Sai l declarator is any of the reserved words
u s e d a n a d e c l a r a t i o n . F u r t h e r m o r e , t h e
declarators m u s t b e l i s t e d i n a l e g a l o r d e r ,
namely, an order that is legal in declarations
(i .e . ARRAY INTEGER won’t work) . One may
i n c l u d e a s a r g u m e n t s t o C H E C K - T Y P E t h e
following special tokens:

TOKEN EFFECT

BUILT-IN

1 LEAP-ARRAY

RESERVED

DEFINE

CONOK

The bit that is on when a
procedure is known to
preserve ACs 0-‘11 (except
AC1 if returning a value) is
returned. S a i l d o e s n o t
clear the ACs when
compil ing a call on a
BUILT-IN procedure.

The bit that is on when an
identifier is an item or
i t e m v a r w i t h a d e c l a r e d
a r r a y d a t u m i s r e t u r n e d
(t h e d i s c u s s i o n o f L e a p
starts on page 83).

The bit that is on for a
reserved word is returned.

The bi t that indicates the
identifier is a macro name
is returned (note: a macro
name as the argument to
DECLARATION will not be
expanded).

T h e b i t w h i c h s a y s “ t h i s
procedure will be evaluated
a t .compile t i m e i f a l l i t s
arguments are constant
expressions” is returned.

Examples:

DECLARATION (FOO) = CHECK-TYPE (INTEGER)
This ir rn rxtrct compare. Only if Foo is
rn intrgor vrrirblr will equality hold.

DECLARATION (A) LAND CHECK-TYPE (ARRAY)
This is not an oxact compare. If A is any
kind of an array, the LAND will be non-zero.

61

MACROS AND CONDITIONAL COMPILATION

I
DECLARATION (CVS) = CHECK,TYPE(EXTERNAL CONOK

OWN BUILT-IN FORWARD STRING PROCEDURE)
The equality holds. FORWARD so that you can
redeclare it without complaints; OWN as a hack
which saves space in the compiler.

DECLARATION (BEG) LAND CHECK-TYPE (RESERVED)
This is non-zero only if one has arid
LET BEG . BEGIN. DEFINE BEG . BEGIN

will only turn the Define bit of BEG on.

NOTE: if the <identifier> of DECLARATION has
not yet been declared or was declared in a n
inner block, then 0 is returned -- it is
undeclared so it has no type.

I

EXPR-TYPE r e t u r n s the same bits that
DECLARATION does, except that the argument to
EXPR,TYPE may be an expression and not just
an ident if ier.

9.7 Miscellaneous Features

COMPILE TIME l/O
Compile time input is handled by the REQUIRE
“<file,name>” SOURCE-FILE construct.
cftie-name> can be any legat file, including TTY:
and MTAO: and of course disk files. (MTA does
not work for TENEX.) The file will be read until
the its end of file delimiter is scanned (<ctrl>Z

~ f o r TTYs o r <meta><ctrl><lf> a t SUAI), a n d i t s
text will replace the REQUIRE statement in the
main file.

C o m p i l e t i m e o u t p u t i s l i m i t e d t o t y p i n g a
message on the user’s teletype. To do this eey
REQUIRE <string-constant> MESSAGE, and the
<string-constant> will appear on your teletype
when the compilation hits that point in your file.

EVALDEFINE, EVALREDEFINE
The reserved word EVALDEFINE may be used in
place- of the w.ord DEFINE if one would like the
identifier that follows to be expanded. When
one follows a DEFINE with a macro name, the
macro- is not expanded, but rather the macro
name is declared at the current lexical level and
a s s i g n e d - the specified macro body.
EVALDEFINE gets you around that. Helps with
automatic g e n e r a t i o n o f macro names.
EVALREDEFINE is also available. _

SAIL
,

ASSIGNC
The following compile time construct makes
recursive macros easier.

’ ASSIGNC <name I> = <macro-body>;

<namel> m u s t b e a f o r m a l t o a m a c r o , a n d
<macro-body> may be any macro body.
Thereafter, whenever <namel> is instantiated,
the body corresponding to <macro-body> is
used in the expansion ra ther than the text
passed to the formal at the macro call.

RESTRICTION: ASSIGNC may only appear in the
body of the macro that enamel> is a formal of.
If it appears anywhere else, the <namel> will
be expanded like any good formal, and that text
u s e d i n t h e A S S I G N C a s <namel>. Unless
you’re being very clever, this is probably not
what you want.

NOMAC
Preceding anything by the token NOMAC will
inhibit the expansion of that thing should that
thing turn out to be a macro.

COMPILER-BANNER
This is a predefined macro which expands to a
string constant containing the text of the two-
line banner which would appear at the top of
the current page if a l is t ing f i le were being
made. This string contains the date, time, name
and page of the source fi le, the value of all
compiler switches, the name of the outer block,
and the name of the current block. Thus you
can automatically include the date of
compilation in a p r o g r a m b y using
COMPILER,BANNER[n T O m] f o r a p p r o p r i a t e n
and m, Try REQUIRE COMPILER-BANNER
MESSAGE; or look at a listing for the exact
format.

9 . 8 Hints

The fo l lowing is a set of h ints and a ids in
debugging programs wi th macros . Unless
otherwise s ta ted array brackets “[I” are the
macro body delimiters.

IFC and friends will not trigger at the point of
macro definition, in a macro actual parameter
list, or inside a string constant.

6 2

SAIL _

DEFINE FOO . [IFC A THENC 8 ELSEC D ENDC];
which is not tha rrmo IS

DEFINE FOO . IFC A THENC [8] ELSEC (D] ENDC;
’ w h i c h ir the rrmr &a

IFC A THENC DEFINE FOO . [B]
ELSEC DEFINE FOO l [D] ENDC;

DEFINE BAZ (A) . [OUTSTR (“A”););
BAZ (IFC B THENC C ELSEC D END0

will rorult in the following string typd
.on your trrminrl:

IFC B THENC C ELSEC D ENDC

STRING A;
Ac”lFC WILL NOT TRIGGER HERE”;

Macros will not be expanded in strings, but
macro formal parameters wi l l be expanded
when they occur in strings within macro bodies
as seen in the second example above.

DEFINE FOO . (BAZ];
OUTSTR (“FOO”);

which wi l l type out the s t r ing FOO on your
terminal rather than BAZ.

Caution should be employed when using letters
(specifically ~3) as delimiters. This may lead to
problems when defining macros within macro6.

DEFlNE MAC(A) “a” . cREDEFlNE FOO l cAai>i

Inside the macro body of MAC, A will not be
recognized as a formal since the 6canner h a s
s c a n n e d CA=, as an identifier by virtue of ~3
being internally represented as letter6 60 that
they could be defined to mean BEGIN and END
r e s p e c t i v e l y (a l s o c a s C O M M E N T) . M o r e
just i f icat ion for th is feature ir s e e n b y t h e
following example:

DEFINE MAC(ABC) “AC” = A VcABC; C;

We want ABC in the text to be the parameter
a n d n o t 8 i f w e w e r e t o i g n o r e t h e m a c r o
d e l i m i t e r s .

W h e n s c a n n i n g l i s t 6 o f a c t u a l paraineters,
macros are not expanded.

MACROS AND CONDITIONAL ‘COMPILATION

The 6ame reasoning hold6 for parame
FORLC.

ter lists to

DEFINE FOO . [A, 8, C];
FORLC I. (FOO) DOC [OUTSTR (“I”);] ENDC

will rorult in FOO typed out on your torminrl.

DEFlNE FOD . [(A, B, C)];
FORLC I = FOO DOC [OUTSTR (“I”);] ENDC

will have the dasirrd result ABC typed out.

In order to take advantage of the nestable
character feature in the parameter6 to a macro
call, one must be in REQUIRE DELIMITERS mode.
Otherwico ccanning w i l l b r e a k u p o n teeing a
comma or 8 right parenthesis.

BEGIN
DEFINE FOOtA) . “A”;

. INTEGER ARRAY ABC[1: 10, 1: lo];
FOO (ABC[1, 2)M

END;

This i6 identical to:

BEGIN
INTEGER ARRAY ABC[1: 10, 1: lo]; I
ABC[14 Comment illogrl;

END; ’

However, if the original program had included a
REQUIRE DELIMITERS statement prior to the
macro call, as below, then the desired effect
would have resulted - i.e., ABC[l, 2]+3 .

- BEGIN
REQUIRE “()a$” DELIMITERS;

DEFINE FOO (A) l (A};
INTEGER ARRAY ABC[1: 10, 1: lo];
FOO (ABC[1, 2])+3;

END;

DEFINE FDO = (A,B];
M A C (FOO) will not have the rosult MAC&B). Howovor,

DEFINE FQO . I(A, B)];
followed by MAC FOO will hrvo the oamo offoct aa
MAC (A, B).

6 3

RECORD STRUCTURES SAIL

SECTION 10 10.3 Declaration Semantics

RECORD STRUCTURES

10.1 Introduction

.

R e c o r d s t r u c t u r e s a r e n e w t o S a i l . T h e y
provide a means by which a number of closely
r e l a t e d v a r i a b l e s m a y b e a l l o c a t e d a n d
manipulated as a unit, without the overhead or
limitations associated w i t h u s i n g p a r a l l e l
arrays and wi thout the restr ic t ion that the
variables all be of the same data type. In the
c u r r e n t i’mplementation, e a c h record is an
instance of a user-defined record class, which
serves as a template describing the various
f ie lds of the record. Internally, records are
small blocks of storage which contain space for
the var ious f ie lds and a pointer to a c lass
descriptor record. Fields are allocated one
per w o r d a n d a r e a c c e s s e d b y c o n s t a n t
indexing off the record pointer. Deallocation is
performed automatically by a garbage collector
or m a n u a l l y t h r o u g h e x p l i c i t c a l l s t o a
deallocation procedure.

10.2 Declaration Syntax

The <field-declarations> have the same form
a s t h e <formal,param-de& o f a p r o c e d u r e ,
except that the words VALUE and REFERENCE
should not be used, and default values are
ignored. E a c h r e c o r d c l a s s d e c l a r a t i o n i s
compiled into a record descriptor (which is a
record of constant record class SCLASS) and is
u s e d b y t h e runtime s y s t e m f o r a l l o c a t i o n ,
deallocation, garbage collection, etc. At runtime
record pointer var iables conta in e i ther the
value NULL-RECORD (internally, zero) or else a
pointer to a record. The <classid list> is used
to make a compile-time check on assignments
a n d f i e l d r e f e r e n c e s . T h e p s e u d o - c l a s s
ANY-CLASS matches all classes, and effectively
disables this compile-time check.

For inst ante,

RECORD-CLASS VECTOR (REAL X, Y, 2);
RECORD-CLASS CELL

(RECORD-POINTER (ANY-CLASS) CAR, CDR);
RECORD-CLASS TABLEAU

(REAL ARRAY A, B, C; INTEGER N, M);
RECORD-CLASS FOO (LIST 1; ITEMVAR A);

RECORD-POINTER (VECTOR) V 1 ,V2;
RECORD-POINTER (VECTOR, TABLEAU) T 1 ,T2;
RECORD-POINTER (ANY-CLASS) R;

RECORD-POINTER (FOO, BAR) FB 1, FB2;
RECORD-POINTER (FOO) FB3;
RECORD-POINTER (CELL) C;
RECORD-POINTER (ANY-CLASS) RP;

COMMENT the following are all ok ryntoctically;
C t NEW-RECORD (CELL);
RPt C;
FB2 c NEW-RECORD (FOO);
FBI c FB3;
FB3 t RP; COMMENT This is probably a runtime bug

since RP will contain a cell record. Sail
won’t catch it, howovor;

CELL:CAR[RP] c FBI;
CELL:CAR[RP] c FBI;

<record-class-declaration>
::- RECORD-CLASS <class-id> (

<field-declarations>)
::- RECORD-CLASS <class-id> (

<field-declarations>) [<handler>]

<record-pointer-declaration>
::- RECORD-POINTER (<classid,list>

) <id-list>
::= RECORD-POINTER (ANY-CLASS
.) 4dLlist>

COMMENT The compiler will complain about these: ;
F B I t C;
FB3 c NEW-RECORD (CELL);
RP t CELL:CAR[FB3];

N O runtime class information is kept with the
record pointer variables, and no runtime class

6 4

SAIL- RECORD STRUCTURES

checks are made on record assignment or field
access. Record pointer variables are allocated
quantities, and should not appear inside SIMPLE
procedures. They resemble lists in that they
are not given any special value upon block
entry and they are set to a null value
(NULL-RECORD) when the block in which they
are declared is ex i ted . (This is SO t h a t a n y
records referred to only in that block can be
reclaimed by the garbage collector.)

Record pointers are regular Sail data t y p e s ,
just l ike integers or strings; record pointer
procedures, arrays, and items all work in the
normal way. As indicated earlier, the constant
NULL-RECORD produces a null reference.

10.4 Allocation

Records are allocated by

NEW-RECORD (<classid>)

which returns a new record of the specified
class. All f ields of the new record are set to
the null or zero value for that field; i.e., real
and integer fields will be set to 0, itemvar fields
to-ANY, lists to NIL, etc. Note that entry into a
block with local record pointer variables does
NOT cause records to be allocated and assigned
to those variables.

10.5 Fie lds

Record fields are referenced by

<classid> : <fieldid> [<record pointor rxpresrion>]

and may be used wherever an array element
may be used. For e x a m p l e

RECORD-POINTER (VECTOR) V;
RECORD-POINTER (CELL) C;
RECORD-POINTER (FOO) F;

VECTOR:X[V] c VECTOR:Y[V);
CELL:CAR[C l NEW-RECORD (CELL)] + Vi
VECTOR:Z[V] c VECTOR:X(CELL:CAR[C) 1;
SUBLIS +-FOO:L(F][1 TO 31;

If the <record pointer expression> gives a null

record , then a runtime error message will be
generated. This is the only runtime check that
is made at present. I.e., no runtime checks are
made to ver i fy that the <classid> in the field
statement matches the c lass of the record
whose field is being extracted.

An array field may be used as an array’ name,
as in

RECORD-POINTER (TABLEAU) T;

TABLEAU:A[TJ[I,J] + 2.6;

provided that a valid array descriptor has been
stored into the field. Unfortunately, Sail does
n o t p r o v i d e a n y c lean way to do th is . One
unclean way is

EXTERNAL INTEGER PROCEDURE ARMAK
(INTEGER LB, UB, *DIMS);

COMMENT roturns address of first data word of new
array. For String arrays set *DIMS to - 1 ,,n.
For highor dimrnrions declare with morr LB, UB pairs;

EXTERNAL PROCEDURE ARYEL (INTEGER ARR);
COMMENT deallocates an array. ARR is the address of

the first data word;

RECORD-CLASS FUBAR (INTEGER ARRAY A);
RECORD-POINTER (FUBAR) FBi

MEMORY[LOCATION (FUBAR:A[FB])] c A R M A K (1, 100, 1);
ARYEL (MEMORY[LOCATION (FUBAR:A[FB])])i

(W a r n i n g : t h e a b o v e a d v i c e i s p r i m a r i l y
intended for hackers. NO promises are made
that it will always work, although this particular
trick is unlikely to be made obsolete in the
forseeable future.)

10.6 Garbage Collection

T h e S a i l r e c o r d s e r v i c e r o u t i n e s a l l o c a t e
records as small blocks from larger buffers of
free storage obtained from the normal Sail free
storage system. (The format of these records
will be discussed in a later section.) From time
to time a garbage collector is called to reclaim
the storage for records which are no longer
a c c e s s i b l e b y t h e user% p r o g r a m (i . e . , n o
variables or accessible records point to them).

6 5

RECORD STRUCTURES SAIL

The garbage collector may be called explicitly
f r o m S a i l p r o g r a m s as external procedure
S R E C G C , a n d a u t o m a t i c i n v o c a t i o n o f t h e
garbage collection may be inhibited by setting
user table entry RGCOFF to TRUE. (In this case,
Sail will just keep allocating more space, with
nothing being reclaimed until RGCOFF is set
back to FALSE or SRECGC is called explicitly).
In addition, Sail provides a number of hooks
that a l low a user to contro l the automat ic
invocation of the garbage collector. These are
discussed later.

10.7 Internal Representations

Each record has the following form:

-1: <ptrs to ring of all records of class>
0: <garbage collector ptr>,,<ptr to class descriptor>

+I: < f i rs t field,

+n: <last field>

Record pointer v a r i a b l e s p o i n t a t w o r d 0
of such records. A String field contains the
address of word2 of a string descriptor, l ike
the string was a REFERENCE parameter to a
procedure. The string descriptors are a l s o
dynamically allocated.

The predefined record class SCLASS defines all
record classes, and is itself a record of class
SCLASS.

RECORD-CLASS $CLASS
(INTEGER RECRNG, HNDLER, RECSU;

INTEGER ARRAY TYPARR; STRING ARRAY TXTARR);

RECRNG is a ring (bidirectional linked list) of
all records of the particular class.

HNDLER is a pointer to the handler procedure
for the class (default SRECS).

RECSIZ is the number of fields in the class.

T Y P A R R is an array of f ie ld descr iptors for
each field of the class.

T X T A R R _ is an array of field names for the
class.

The normal value for the handler procedure is

SRECS, which is the standard procedure for
such functions as allocation, deallocation, etc.

TYPARR and TXTARR are indexed [O:RECSIZ].
TXTARR[O] is the name of the record c lass .
TYPARREO] conta ins type b i ts for the record
class.

Example:

RECORD-CLASS FOO (LIST I; ITEMVAR A);

The record class descriptor for FOO contain:

FOO-1: *ptrr for ring of all records of fCLASS>

F O O : <ptr to fCLASS>
FOO+ 1: eptrr for ring of all rrcords of class FOO;

initialized to <F00+2,,F00+2> >.
F00+2: gtr to handler procedure SREC$>
FOOt3: 2
F00+4 cptr t o TYPARR>
FOOt5: <ptr t o TXTARR,

The fields of FOO are:

SCLASS:RECRNG[FOO] - <initialized to null ring,
i.e., xwd(loc(F00)+2,loc(FOO~+2)~

SCLASS:HNDLER[FOO] . SRECS
ECLASS:RECSIZ[FOO] . 2
SCLASS:TXTARR[FOO] [0] = “FOO”
SCLASS:TXTARR[FOO] [I] . “I”
SCLASS:TXTARR(FOO] [21 - “A”
$CLASS:TYPARR[FOO] [O] 9 <bits for garbage collector>
$CLASS:TYPARR[FOO] [1) l <descriptor for LIST>
SCLASS:TYPARR[FOO] (21 l <descriptor for ITEMVAR,

10.8 Handler Procedures

Sail uses a single runtime routine SRECFN (OP,
R E C) t o h a n d l e s u c h s y s t e m f u n c t i o n s a s
allocation, deallocation, etc. The code compiled
for r + NEW-RECORD (foe) is

PUSH P, tll
PUSH P, [fool
P U S H J P,SRECFN
tlOVEll 1,r

SRECFN performs some type checking and then
jumps to the handler procedure for the class.
The normal value for this handler procedure is
SRECS. I t is possib le to subst i tute another
handler procedure for a given class of records

6 6

SAIL

by including the procedure name in bracket6
after the record class declaration. The handler

6hould a lso be used to re lease the space .

must have the form
These points are il lustrated by the following
example:

RECORD-POINTER (ANY-CLASS) PROCEDURE <procid>
(INTEGER OP; RECORDJOINTER (ANY-CLASS) RI;

FORWARD RECORD-POINTER (ANY-CLASS) PROCEDURE
FOOH (INTEGER OP:

Here OP will be a small integer saying what is
to be done. The current assignments for OP
are: .

RECORD,P6INTER (ANY-CLASS) RI;
RECORD-CLASS FOO (ITEM/AR IV) [FOOH);
RECORD-POINTER (ANY-CLASS) PROCEDURE FOdH

(INTEGER OP; RECORD-POINTER (ANY-CLASS) RI;
BEGIN

vrluo morning .
PRINT(“CALLINC FOOH. OP = “, OP);
IF OP l 1 THEN

0 i n v a l i d
1 rllocrto a now record of record ekes R
2 not used
3 not usrd
4 mark all firlda o f record R
5 doleto all l paco for record R

BEGIN -
RECORD-POINTER (FOO) F;
F c $RECS (1,R);
FOO:lV[F) c NEW;
RETURN (F);
END

ELSE IF OP . 5 THEN
- DELETE (FOO:IV(R));

RETURN (tREC$ (OP, RI);
END;

At SUAI, macro definitions for these functions
may be found in the file SYS:RECORD.DEF, which
also includes EXTERNAL declarat ions for
SCLASS, GRECS, and SRECFM

SRECS (1, R) allocates a record of the record
class specified by R, which must be a record of
class SCLASS. All fields (except string) are
initialized to zero. String fields are initialized
to a pointer to a string descriptor with length
zero (null string).

SRECS (4, R) is used by the garbage collector to
mark all record fields of R.

S R E C S (5 , R) d e a l l o c a t e s r e c o r d R , ’ a n d
deallocates all string and array fieldsof record
R. Care must be exercised to prevent multiple
pointers to string and array fields; i.e., DC NOT
store the location of an array in fields of two
di f ferent records unless extreme caut ion is
t a k e n t o h a n d l e d e l e t i o n . This can be
accomplished through user handler procedures
w h i c h z e r o a r r a y fields (without actual ly
d e l e t i n g t h e a r r a y s) p r i o r t o t h e c a l l o n
SRECS (5, R).

NOTE: When an alternate handler procedure is
suppl ied i t must per form a l l the n e c e s s a r y
functions. One good way to do this is to test
f o r t h o s e OPs p e r f o r m e d b y t h e a l t e r n a t e
handler end call SRECS for the others. If SRECS
is used to allocate space for the record then it. -

RECORD STRUCTURES

lo.9 More about Garbage Collection

The information used by the system to decide
when to call $RECGC on it6 own is accessible
through the global array BSPCAR. In general,
SSPCAR[n] point6 at e descriptor block used to
contro l the a l locat ion of smal l b locks of n
words. This descriptor includes the following
fields:

BLKSIZ numbor of words par block in this rprcr
TRIGGER a countrr controlling time of grrbrgr collection
TGRMIN d,rcribod below
TUNUSED numbor of unurod block8 on the free list
TINUSE total numbor of blocks in use for this rprco
CULPRIT the number of timrs this sprco has caused

collrction

The appropriate macro definitions for access to
these fields m a y be found in the source fi le
cSUAIPSYS:RECORD.DEF. The decision to invoke
the garbage collector is made as part of the
block allocation procedure, which works roughly
as follows:

6 7

RECORD STRUCTURES SAIL

I

INTEGER spc,sizw
s ize t $CLASS:RECSIZ[clrssid]+2;
IF sita> THEN roturn o CORGET block;
s p c t $SPCAR[site];

F ~M~RY(sPc+TR~GGER]
t MEMORY[spc+TRIGGER]- 1) <O

THEN BEGIN
IF 4EMORY[GOGTAB+RGCOFF] THEN BEGIN

MEMORY[spc4ZULPRIT] t MEMORY[spc+CULPRIT]+ 1;
SRECGC;
GO TO Ll;

END END;
allocrto the block from space rpc,
update countrrs, etc.,

which contains a number of useful examples
and auxillirry functions.

Once SRECGC has returned all unused records
to the free lists associated with their
r e s p e c t i v e b l o c k s i z e s , i t m u s t a d j u s t t h e
trigger levels in the various spaces. TO do this,
it first looks to see if the user has specified the
location of an adjustment procedure in
TGRADJ(USER). I f t h i s c e l l i s n o n - z e r o t h e n
SRECGC calls that procedure (which must have
no parameters). Otherwise it calls a default
system procedure that works roughly like this:

<set ail TRIGGER Iovels to -l>
FOR size c 3 STEP 1 UNTIL 16 DO BEGIN

s p c c SSPCAR[sire];
IF MEMORY[spc+TRlGGER]<O THEN BEGIN

ttMEMORY[spc+TINUSE]*RGCRHO(USER);
ttMAX(t, MEMORY[spc+TUNUSED],

MEMORY[spc+TGRMIN]);
END END;

.

f?GCRHO(USER) i s a r e a l n u m b e r c u r r e n t l y
in i t ia l ized by the system to 0 .33 . Thus the
behavior of Sail’s automatic garbage collection
system may be modified by

Satting RGCdFF(USERX
Supply ing a procoduro in TGRADJ(USERX
Modifying RGCRHO(USERX
M o d i f y i n g the TGRMIN ontrios in the sprco dorcriptorr. ,

One word of caution: User procedures that set
trigger levels must set the trigger level of the
space that caused garbage collection to some
positive value. I f n o t t h e n a runtime e r r o r
message will be generated.

L o o k a t t h e f i l e cSUAI~RECAUX.SAI[CSP,SYS J,

F

I 68 ’

SAIL-

SECTION 11

TENEX ROUTINES

11.1 Introduction

This section describes routines which interface
Sail with the TENEX operating system. Routines
for fi le input/output, terminal handling, and
miscellaneous system calls are described here.
For TENEX-specific details of other routines
(such as interrupts) consult the appropriate
chapter.

11.2 TOPS- 10 Style input /Out put

“Standard” Sail programs written using TOPS-
10 l/O routines such as OPEN, LOOKUP, etc., will

run under TENEX with little or no conversion
necessary. The TENEX Sail routines simulate
most of the effects of the TOPS-10 l/O calls
without using the PA-1050 emulator.

MTAPE Options “I” and NULL are not
available.

In’TENEX Sail the non-zero values of error flags
returned by rout ines 6uch as LOOKUP are
ERSTR JSYS error numbers. The interpretation
of zero/nonzero is the same as with the TOPS-
10 l/O routines, but the specific nonzero values
are probably different.

OPEN MODE is mostly ignored (exception:
dump mode on a dectape ignores the
directory). The number of input and
output buffers serves only to indicate
whether reading or writing is desired.

OUT no differences.

REALIN no d i f ferences.

RELEASE The close inhibit bits have no effect.
H e r e a r e the TOPS-10 l /O rout ines and the
differences, if any, under TENEX.

ARRYIN TENEX dump mode implies a single

RENAME Changing the protect ion does not
work. See GTFDB and CHFDB.

DUMPI JSYS.

ARRYOUT similar to ARRYIN.

SETPL The routines CHARIN and SIN1 do not
update the variables associated with
the channel by SETPL.

CLOSE The close inhibit bits have no effect. SETSTS not available; see SDSTS, STSTS.

CLOSIN same as CLOSE.

CLOSO same as CLOSE.

ENTER -no differences.

GETCHAN ‘In TOPS-IO, GETCHAN return6 the
number of a channel -for which no
OPEN is current ly in ef fect . Thus
successive GETCHANs without
i n t e r v e n i n g O P E NS will return the

TENEX ROUTINES

same channel number. In TENEX Sail,
GETCHAN returns the number of a
channel for which no OPEN or
GETCHAN is currently in effect; thus
s u c c e s s i v e GETCHANs w i l l r e t u r n
different channel numbers.

GETSTS not available; see GDSTS, GTSTS.

INOUT not available.

INPUT assumes 200 characters maximum if
no length variable has been
associated with the channel.

INTIN no differences.

LINOUT no d i f ferences.

LOOKUP no differences.

STDBRK no differences.

TMPIN not available.

TMPOUT not available.

USETI works only on those devices where
the SFPTR JSYS works. On a dectape
the MTOPR JSYS is used, and may not
produce the same resul ts as on a
TOPS-10 system. USETI takes effect

6 9

TENEX ROUTINES SAIL

immediately (the nondeterminancy of
t h e s t a n d a r d T O P S - 1 0 (n o t SUAI)
USETI is not simulated). Equivalent to
SFPTR (than, (N-1)*‘200);

USETO same as USETI. TENEX has only one
f i le pointer , so in fact USETI and
USETO a r e E X A C T L Y t h e s a m e
function.

WORDIN no d i f ferences.

WORDOUT no differences.

MAGTAPE I/O
The user is warned that there are ser ious
limitations in TENEX regarding magtapes. While
TENEX is supposed to have device-independent
l/O, the magtape code in TENEX (as of .v. l-31)
is minimal, allowing only dump mode transfers.
Further, end of fi le markers must be written
explicitly, and it is sometimes necessary to do
an MTOPR operation 0 to reset the magtape
status bits.

TENEX Sail has been designed to handle some
of these things in a way that makes features
a v a i l a b l e o n a s t a n d a r d T O P S - 1 0 s y s t e m
available in a transparent way. For example,
string input and output functions work, with Sail
a s s u m i n g 128-word r e c o r d s o n t h e t a p e .
A R R Y I N a n d A R R Y O U T c a u s e the DUMPI a n d
DUMP0 JSYSes to be executed for the specified
word counts. TENEX Sail does not actually open
t a p e s f o r w r i t e u n t i l a w r i t e o p e r a t i o n i s
requested. A CLOSF or CFILE on a tape wi l l
w r i t e t w o E O F ’ S (M T A P E (c h , “E”)) a n d
backspace over one of them, if and only if the
file has been opened. Do not rewind a tape
unless it has been closed. The user who wants
to wr i te magtape code for operat ions other
t h a n t h e a b o v e i s h e r e b y w a r n e d t h a t t h e
T E N E X m a g t a p e code is f raught wi th per i l .
TENEX Sail certainly allows full access to TENEX
in this regard, however.

11.3 TENEX Style Input /Out put

The following functions satisfy most Sail and
TENEX needs:

ARRYIN Read in an array (36-bit words)

ARRYOUT Write an array

CFILE Release a file

CPRINT Wri te a str ing

INPUT Read in a string

JFNS Read file name

OPENFILE Obtain a file

OUT Write a string

SETINPUT Set parameters for input

OBTAINING ACCESS
The main procedure for obtaining access to
files is OPENFILE. In terms of JSYSes, OPENFILE
does a GTJFN and OPENF. Additional routines
provide s u p p o r t t o O P E N F I L E , including
SETINPUT, INDEXFILE, and CFILE.

DATA TRANSFER
The TENEX routines for transferring data are
generally the same as the TOPS-10 rout ines.
One improvement in TENEX Sail is that
characters and words can be mixed in reading
or writing to a file, provided the file is on the
disk. Such I/O is called “data mixed l/O”.

The following interpretation is given to data
m i x e d I / O . T h e r e i s o n e l o g i c a l c h a r a c t e r
pointer into the file. When a character is read
o r w r i t t e n t h e r o u t i n e s a c c e s s t h e b y t e
designated by the pointer and then increment
the pointer. There is only one pointer for both
input and output. W h e n a w o r d i s r e a d o r
written, the next full word in the file is
accessed. Accessing a word advances the
character pointer to the next full word in the
file, where five ‘/-bit ASCII characters occupy
one 36-bit word. If a read passes the end of
the fi le then the EOF variable (specified by
SETINPUT or OPEN) and the external in teger
-SKIP, are set to -1. If a write passes the end
of file then the end of file is advanced.

RANDOM I/O
The routines RCHPTR, SCHPTR, RWDPTR, and
SWDPTR give access to the file pointer. USETI
a n d USETO are equiva lent to SWDPTR (than,
(N-l)*‘200);.

7 0

SAIL- TENEX ROUTINES

ERROR HANDLING
When er rors occur the runtime rout ines wi l l
sometimes trap the errors themselves. This
practice is held to a minimum since the error
i t s e l f m a y b e i n f o r m a t i o n t h a t t h e u s e r i s
interested in seeing. Usually the routines (as
marked) put the TENEX error code in -SKIP,
which may be examined by the program. The
TENEX error numbers do not always make good
sense, ‘but for the cases that they do the ERSTR
r o u t i n e w i l l p r i n t o u t o n t h e t e r m i n a l t h e
message associated with a given error number.

DIRECT DSK OPERATIONS
The routines DSKIN and DSKOUT do direct DSK
operations in TENEX Sail, using the DSKOP JSYS.
These routines relate only to the IMSSS version
of TENEX-Sail.

CHAR + CHARIN (CHAN)

The next character from CHAN is returned. Zero
is returned if the file is at the end.

CHAROUT

CHAROUT (CHAN, CHAR)

The single character CHAR is written to CHAN.

CHFDB’

CHFDB (CHAN, DISPLACEMENT,
MASK, CHANGED-BITS)

ASND, RELD

SUCCESS + ASND (DEVICE-DESCRIPTOR);
SUCCESS + RELD (DEVICE-DESCRIPTOR) ’

DEVICE,DESCRIPTOR (in the TENEX sense) is
ass igned to or deass igned f rom the job . I f
DEVICE-DESCRIPTOR is -1 when calling RELD
t h e n ’ a l l d e v i c e s a s s i g n e d t o t h e j o b a r e
deassigned. TENEX error codes are returned in
-SKIP, which is zero if no errors occurred.

BKJFN

BKJFN (CHAN)

Does the BKJFN JSYS on CHAN. TENEX error
codes are returned in -SKIP, which is zero if
no error6 occurred. This function is escape
from Sail.

CFILE

SUCCESS + CFILE (CHAN)

T h i s r o u t i n e c l o s e s t h e f i l e (C L O S F) a n d
releases the CHAN (RLJFN). This is the ordinary
w a y t o d i s p e n s e w i t h a f i le . CFILE returns
TRUE 4f WAN is legal and released; it returns
FALSE otherwise.

This rout ine ‘per forms the CHFDB JSYS on
CHAN, with DISPLACEMENT, MASK, and
CHANGED&BITS as descr ibed. in the JSYS
manual.

CLOSF

CLOSF (CHAN)

This routine does a CLOSF on CHAN. CHAN is
not released, If the device is a magtape open
for output then 2 file marks are written and a
backspace is performed. This writes a standard
end-of-file on the tape.

CVJFN

REAL,JFN + CVJFN (CHAN)

The full TENEX JFN (including flags in the left
half) corresponding to Sail channel CHAN is
returned. Only a hacker will ever need this.

DELF

DELF (CHAN)

The file on CHAN (which must NOT be open) is

71

TENEX ROUTINES

deleted. TENEX error codes are returned in
-SKIP, which is zero if no errors occurred.

DELNF

I DELETED + DELNF (CHAN, KEPT)

This routine deletes all but KEPT versions of
the file on CHAN, which must have had a CLOSF
done on it first. If KEPT=0 then all versions of
the file are deleted. If KEPT=1 then all versions
e x c e p t t h e m o s t r e c e n t a r e d e l e t e d . The
number of files actually deleted is returned as
the value of DELNF.

DEVST, STDEV

I “DEVICE-NAME” + DEVST (DEVICE-DESIGNATOR);
DEVICE,DESIGNATOR + STDEV (“DEVICE-NAME”)

These routines convert between str ing
D E V I C E - N A M ES (such as “DTAO”) and TENEX
DEVICE-DESIGNATOR S. TENEX does not believe
that lower case letters are equivalent to upper
case letters in STDEV. TENEX error codes are
returned in -SKIP, which is zero if no errors
occurred.

SAIL

DVCHR

DEVICE-CHAR + DVCHR (CHAN, @AC 1, 61AC3)

The DEVCHR JSYS is performed. The flags from
AC2 are returned as the value of the call, and
AC1 and AC3 get the contents of at’s 1 and 3.

ERSTR

ERSTR (ERRNO, FORK)

Using the ERSTR JSYS, this routine types on the
console the TENEX error string associated with
ERRNO for fork FORK (‘400000 for the current
fork). Parameters (in the sense of the ERSTR
JSYS) are expanded. Types ERSTR:
UNDEFINED ERROR NUMBER (and sets -SKIP- to
-1) if something is wrong with ERRNO or FORK.

GDSTS, SDSTS

STATUS + GDSTS (CHAN, @WORD-COUNT);
SDSTS (CHAN, NEW-STATUS)

The status of the device on CHAN is returned
or changed. For GDSTS, @WORD-COUNT is set
to the contents of AC3.

DEVTYPE

DEVICE-TYPE + DEVTYPE (CHAN)

The DVCHR JSYS is used to return the device
type of the device open on CHAN.

Remark: some magtape statuses (such as EOF)
are set by MTOPR and not by SDSTS.
Ordinarily the Sail runtirne system takes care of
this, but it is worth mentioning since so many
users have run into this poorly documented fact
about TENEX.

GNJFN
DSKIN, DSKOUT

MORE-FILES + GNJFN (CHAN)
DSKIN (MODULE, RECNO, COUNT, @LOC);
DSKOUT (MODULE, RECNO, COUNT, @LOC)

[IMSSS only.] These routines do direct DSK I/O.
M O D U L ES 4-7 are lega l for everyone; o ther
modules require enabled status. The routines
t r a n s f e r COU_NT (<‘lOOO) w o r d s , s t a r t i n g a t
location LOC in memory and at record RECNO in
MODULE. TENEX error codes are returned in.
-SKIP, which is zero if no errors occurred.
WARNING: NO bounds checking is performed to
see if the LOC is a legal Sail array.

D o e s t h e G N J F N J S Y S . A’ file that is open
cannot have GNJFN applied to it. INDEXFILE
should normally be used instead of GNJFN. An
exception is if files are being indexed without
actually being opened (i.e., without an OPENF
JSYS), which is a sensible way of performing
operations such as counting the number of files
in a group.

7 2

,

SAIL _

GTFDB Argument

GTFDB (CHAN, @BUF)

The entire FOB of CHAN is read into the array
BUF. No bounds checking is performed, so BUF
should be at least ‘25 words.

GTJFN

I CHAN + GTJFN (“NAME”, FLAGS)

Does a GTJFN. If NAME is non-null then it is
used, otherwise the terminal is queried for a
filename. Any error code is returned in -SKIP,
The Sail channel number obtained is returned
as the value of GTJFN.

T h e f o l l o w i n g v a l u e s f o r F L A G S w i l l b e
translated by Sail before doing the JSYS:

a
/ vrluo trrnrlrtod to

0 ’ 10000 1000000 (ordinary input)
1 ‘60000 1000000 (ordinary output)

Other values are taken literally.

Ordinar i ly OPENFILE will be used rather than
GTJFN. The routines GTJFN, OPENF, GNJFN,
C L O S F , R L J F N , a n d D V C H R a r e a l l i n t h e
c a t e g o r y o f being included o n l y f o r
completeness; they are not necessary in most
programs.

GTJFNL

CHAN t GTJFNL (“ORIGSTR”, FLAGS, JFN,JFN,
“DEV”, “DIR”, “NAM”, “EXT”,
“PROT”, “ACCOUNT”, DESIRED,JFN)

Does the long form of the GTJFN JSYS (and
does not do an OPENF). The arguments are put
into ihe accumulators and locations in the table
accepted by the long form of the GTJFN JSYS.
These arguments are given below, where “AC
X” means an accumulator and “E+X” means in
the Xth address of the table.

I . _

TENEX ROUTINES

Whore plrcod Whet

“ORIGSTR” AC 2 Partial or complete string
FLAGS E+O Flags to GTJFN
JFN,JFN E+l xwd input JFN, output JFN
“DEV” E+2 dovice
“DIR” E+3 d i r e c t o r y
“NAME” E+4 nrmo
“EXT” E*5 l xtoneion
“PROT” E+6 protection
“ACCOUNT” E+7 a c c o u n t
DESIRED,JFN E+‘lO derirod JFN if 811 on

GTSTS, STSTS

STATUS + GTSTS &HAN);
STSTS (CHAN, NEW-STATUS)

These routines examine and change the fi le
status using the JSYSes. TENEX error codes
are returned in - S K I P , w h i c h i s z e r o i f n o
errors occurred.

W A R N I N G : T h e r e s u l t s o f GTSTS a r e n o t
necessarily appropriate for determining end-of-
fi le if the fi le is being page-mapped by Sai l .
L o o k . at t h e E O F v a r i a b l e i n s t e a d . See
SETINPUT.

INDEXFILE

ANOTHER t INDEXFILE (CHAN)

I f C H A N w a s o p e n e d v&h the “s” o p t i o n b y
OPENFILE then INDEXFILE wi l l t ry to get the
next file in the ‘9” group. INDEXFILE returns
TRUE as long as another file can be found on
CHAN. Example:

JFN c OPENFilE (“<JONES>*.SAl;*“, “RO*“);
COMMENT Read all of Jonoe’s Seil progrrmt;

SETINPUT (JFN, 200, 0, EOF);

DO BEGIN “INDEX”
DO BEGiN “READ FILE”

STRING S;
S c tNPUT (JFN, BREAK-TABLE);
COMMENT process

END “READ FILE” UNTIL EOF;
END “INDEX” UNTIL NOT INDEXFILE (JFN);

7 3

TENEX ROUTINES SAIL

The “s” option takes the place of reading the
MFD and UFD on a TOPS-10 system. INDEXFILE
clears the EOF, LINNUM, SOSNUM, and PAGNUM
variables associated with CHAN if these have
been set by SETINPUT and SETPL.

JFNS

“NAME” + JFNS (CHAN, FLAGS)

The name of the file associated with CHAN is
returned. FLAGS are for accumulator 3 a s
d e s c r i b e d i n t h e J S Y S m a n u a l . Z e r o i s a
reasonable value for FLAGS.

“NAME” c JFNSL (CHAN, FLAGS, LHFLAGS)

(This routine corrects a deficiency in the JFNS
function.) The name of the file associated with
CHAN is returned, using FLAGS for accumulator
3 and putting LHFLAGS into the left half of
accumulator 2 as described in the JSYS manual.
If LHFLAGS is -1 then the value returned by
GTJFN is used.

MTOPR

MTOPR (CHAN, FUNCTION, VALUE)

The MTOPR JSYS is executed with FUNCTION
placed into AC2 and VALUE into AC3. The
TOPS-10 style MTAPE function may be more
comfortable. [(Stupid!) IMSSS and SUMEX: skip
to end of tape does not work.]

OPENF

OPENF (CHAN, FLAGS)

Does the OPENF JSYS on CHAN with FLAGS as
the contents of accumulator 2. TENEX error
codes are-returned in -SKIP, which is zero if

I

no errors occurred. The following values for
FLAGS will be translated by Sail before setting
AC2:

’ value trtnrlrtod t o
0 ‘070000200000 (input characters)

1 ‘070000 100000 (output characters)
2 ‘440000200000 (input words)
3 ‘440000 100000 (output words)
4 ‘447400200000 (dump road)
5 ‘447400 100000 (dump writ.)

Values 6-10 are reserved for expansion; ‘other
values are taken literally.

Best results are obtained by opening a TTY in
7-bit mode, the DSK or DTA in 36bit mode, and
a magtape in 36bit dump mode.

OPENFILE

CHAN + OPENFILE (“NAME”, “OPTIONS”)

NAME is the name of the file to be opened. If it
is null then OPENFILE gets the filename from the
terminal using TENEX filename recognition.
CHAN, the value returned by OPENFILE, is a Sail
channel number. This is not necessarily the
same as the TENEX JFN (see CVJFN). All TENEX
Sail functions (except SETCHAN) require Sail
channel numbers for arguments. OPTIONS is
one or more characters specifying the kind of
access desired. The legal characters are

Read or write:
R read
W w r i t e
A ‘ a p p e n d

Version numbering, old-new:
0 old file
N new file
T temporary file
* index with INDEXFILE routine

Independent bits to be set:
C require confirmation
D ignore deleted bit
H “thawed” access

Error handling:
E return errors to user in the external

integer -SKIP, TENEX error codes are used.
(CHAN will be released in this case.)

I f a n e r r o r o c c u r s a n d m o d e “E” w a s n o t
specified then OPENFILE gives an error message
and attempts to obtain a fi le name from the

7 4

SAIL TENEX ROUTINES

terminal. I f a n e r r o r o c c u r s w h e n “E” w a s
specified then OPENFILE will return -1 for CHAN
and the TENEX error code wi l l be put into
-SKIP,

RFBSZ

BYTE-SIZE + RFBSZ (CHAN)

Examples:
The byte-s ize of the f i le open on CHAN is
returned. This function is escape from Sail.

COMMENT get a filenrmo from the torminrl
and write the file;

BEGIN
INTEGER JFN;
Ou’rSTR (CRLF & “FILE NAME* “1;
JFN c OPENFILE (NULL, “WC”);

COMMENT write, confirm name;
CPRINT (JFN, “text
#I

h
CFILE (JFN); COMMENT close thr fib;
END; ,

COMMENT read a known fib;
BEGIN
STRING S;
INTEGER JFN, BRCHAR, EOF;
SETBREAK (1, ‘12, ‘I 5&‘14, “IN”);
J F N c OPENFILE (“<JONES>SECRET.DATA”, “RCO”);
SETtNPUT (JFN, 200, BRCHAR, EOF);
DO BEGIN

S c INPUT (JFN, 1);
END UNTIL EOF;

CFILE (JFN);
END;

Wizards: The OPENF is for 36-bit transfers;
except that TTY, LPT, and a device for which a
36-bit OPENF fails get 7-bit mode.

RCHPTR, SCHPTR *

PTR + RCHPTR (CHAN);
SCHPTR (CHAN, NEWPTR)

The number of the byte which will be accessed
next by character I /O is returned or set. The
firSt character of a file is character number 0.
If NEWPTR--1 for SCHPTR then the pointer is
set to end of file, Setting the pointer beyond
end of file wiil change-fhe length of the file if it
i s b e i n g w r i t t e n . TENEX error codes are
returned in -SKIP, which is zero if no errors
occurred.

. -

RFPTR, SFPTR

PTR + RFPTR (CHAN);
SFPTR (CHAN, NEWPTR)

These routines perform JSYSes and are escape
from Sail. TENEX error codes are returned in
-SKIP, which is zero if no errors occurred.

RLJFN

RLJFN (CHAN)

This routine does the RLJFN JSYS.

SUCCESS + RNAMF (EXISTINGCHAN, NEWCHAN)

The RNAMF JSYS is ‘performed, renaming the
f i l e o n E X I S T I N G C H A N t o t h e n a m e o f t h e
(vestigial) fi le on NEWCHAN. It is necessary
t h a t CLOSF(EXISTINGCHAN) b e d o n e b e f o r e
RNAMF and that OPENF be done afterwards.
The TOPS-10 style RENAME is sometimes more
convenient to use than RNAMF, since RENAME
performs the GTJFN and OPENFs necessary for
the renaming operation. However, the actual
J F N a s s o c i a t e d w i t h C H A N i s c h a n g e d b y
RENAME.

RWDPTR, SWDPTR

PTR + RWDPTR (CHAN);
SWDPTR (CHAN, NEWPTR)

The number of the word which will be accessed
next by word I/O is returned or set. The first
word of a file is word number 0. If NEWPTR=-1
for SWDPTR then the pointer is set to end of

7 5

TENEX ROUTINES

file. Setting the pointer beyond end of file will
change the length of the f i le i f i t is being
written.

SETCHAN

CHAN + SETCHAN (REAL,JFN,
GTJFN,FLAGS, OPENF,FLAGS)

This function is liberation from Sail l /O. It is
provided for doing Sail I /O on a JFN that is
obtained from some means other than the Sail
fi le-opening routines - - for example , a JFN
passed from a superior fork.

REAL,JFN is a 36-bit JFN (or JFN substitute,
such as a Teletype number), GTJFN,FLAGS and
OPENF,FLAGS are the f lags that should be
recorded describing how the GTJFN and OPENF
were accomplished. REAL,JFN need not be
open. The value returned by SETCHAN is the
Sail channel number which should be used for
subsequent Sai l I /O . SETCHAN is the only
function in TENEX Sail that takes an actual JFN
as an argument.

SAIL

-SKIP, to -1 if the string was terminated for
count; otherwise -SKIP, will be set to BRCHAR.
T o d e t e r m i n e e n d - o f - f i l e , e x a m i n e t h e EOF
variable for the channel (see SETINPUT).

SIZEF

SIZE + SIZEF (CHAN)

The size in pages of the file open on CHAN is
returned. TENEX error codes are returned in
-SKIP, which is zero if no errors occurred.

UNDELETE

UNDELETE (CHAN)

The file open on CHAN is undeleted. TENEX
error codes are returned in -SKIP, which is
zero if no errors occurred.

SETINPUT

SETINPUT (C H A N , @COUNT, @BRCHAR, (PEOF)

This function relates the COUNT, BRCHAR, and
EOF variables to channel CHAN in the same way
that OPEN does. The INPUT function (page 39)
uses 200 for the default value of COUNT if no
location has been associated with CHAN.

Al l l /O t ransfer rout ines a lso set -SKIP, t o
indicate e n d - o f - f i l e a n d l / O e r r o r s . For
example, on return from INPUT -SKIP, will be
-1 if a n end-of - f i le occurred, a TENEX error
number if an error occurred, and zero
otherwise.

SINI

“STRING” t SINI (CHAN, MAXLENGTH, BRCHAR)

A string of characters terminated-by BRCHAR or
by reaching MAXLENGTH characters, whichever
happens f i rs t , is r e a d f r o m C H A N . SINI s e t s

11.4 Terminal Handling

T h e s i m p l e s t w a y t o w r i t e s t r i n g s o n t h e
t e r m i n a l i s w i t h P R I N T . S e e p a g e 5 3 . T h e
simplest way to read strings from the terminal
i s w i t h I N T T Y . S e e p a g e 7 9 . T h e f o l l o w i n g
detailed discussion about terminal handling will
n o r m a l l y b e o f i n t e r e s t o n l y t o a d v a n c e d

1 programmers. The rest of this section is new.

THE TERMINAL AS A DEVICE
We first discuss some of the problems in using
the terminal as a device (i .e . , when device
“ T T Y : ” i s o p e n e d b y OPENFILE or a s imi lar
function). Since Sail has various functions for
reading strings, reals , and integers f rom an
arbitrary device, this can be a useful feature.

TENEX provides quite general teletype service.
However , the lack of a defaul t system l ine
edi tor creates some problems. N o t e t h e
p r o l i f e r a t i o n o f l i n e e d i t o r s i n t h e m a n y
commonly used TENEX programs. Some of them,
such as the INTERLISP editor, are carefully and
cleanly written. Most TENEX utility programs,
however, work quite poorly and inconsistently
with regard to the controlling terminal.

The TOPS-10 system has a simple line editor.

7 6

SAIL TENEX ROUTINES

On a standard Teletype device, the standard
TOPS-10 editor activates on a carriage return,
a l tmode, control -G, or control -Z . ASCI I DEL
(‘177) deletes the previous character; control-U
deletes the current line; control-R retypes the
current line; and control-Z signifies end-of-file
when the terminal is INlTted as a device. (The
SUAI d isp lay l ine ed i tor a lso has character
insertion, deletion, searching, kill-to-character,
and settable activation characters.) The great
virtue of this is that programs can be written in
a dev ice- independent manner . W h e n t h e
terminal is accessed as a device the system
handles line editing.

Many TOPS-10 programs take advantage of this
device-independence, using the INPUT, REALIN
and INTIN functions to access the system line
editor. TENEX has had no system line editor;
while IMSSS and SUMEX have had a line editor
in their TENEX for some time, it is not in
general use.

Therefore , the features of a “system” l ine
e d i t o r h a v e b e e n p u t i n t o t h e T E N E X S a i l
runtime system. Several schemes have been
implemented in TENEX Sail as of this writing.
W h e n a channel is opened to the controll ing
t e r m i n a l , t h r e e k i n d s o f l i n e e d i t i n g a r e
available: 1) a TOPS-10 style line editor, 2) a
TENEX-style line editor, and 3) no line editor at
all. The TOPS-10 style editor is the default
with a channel o p e n e d v i a O P E N ; t h e
TENEX-style editor is the default when a TENEX
function (such as OPENFILE or GTJFN) is used to
obtain the channel. The function SETEDIT can
be used to change which convention is used.
More detailed description of these thr88 kinds
of editing f0li0ws.

TOPS-10 Style Editor. The OPEN function to
the controlling terminal, usually “TTY” in the
s e c o n d rrgument, gets the following editing
convent ions for funct ions INPUT, INTIN a n d
REALIN:

‘ 2 5 (c o n t r o l - U) deletes the ent i re l ine and
e c h o e s c o n t r o l - G (BEL) CR LF to the
terminal.

‘ 3 2 (c o n t r o l - z) m e a n s end-of-file, a f ter ali
previous input is read in.

‘33 (ESC, altmode) activates and-is sent to the
program as ‘33. This is consistent with
current TOPS-10 practice. Over the

years there have been several
altmodes: ‘ 3 3 , ‘ 1 7 5 , a n d ‘176. O n
terminals that TENEX believes to be a
model 33 teletype, the characters ‘175
and ‘176 are t ransl i terated to ‘33 by
T E N E X befOr the Sail runtime s y s t e m
sees them.

‘37 (US, TENEX EOL), which is found in the
input buffer when CR is typed at the
terminal, is transliterated to a ‘15 ‘ 1 2
(CRLF) S8qU8nC8,

‘177 (DEL, rubout) d8l8t8S the last character ;
consecut ive deleted characters are
echoed, surrounded by backslashes “\“.
(A t I M S S S a n d S U M E X t h e d e l e t e d

characters are r8mOV8d from the screen
w i t h t h e D E L C H J S Y S , w h i c h i s n o t
supported by BBN.)

The edi tor act ivates on l ine feed, a l tmode,
control-G, and control-Z.

Ail this means that programs .written for the
TOPS-10 system, accessing the contro l l ing
terminal with INPUT et al, should work with
regard to teletype input. The above is also a
description of the operation of INCHWL, except
that control-Z is simply a break character to
INCHWL.

TENEX-Style Editor. The OPENFILE, GTJFN, and
GTJFNL functions to the controlling terminal set
the TENEX Sai l l ine edi tor to the fo l lowing
conventions:

IMSSS and SUMEX. These sites use the PSTIN
J S Y S f o r l i n e e d i t i n g i n T E N E X , w i t h t h e
following conventions:

‘12 (linefeed) allows input to continue on the
next line.

‘22 (control-R) retypes the current line.

‘27 (control-W) deletes a “word” (up to the
next space). This prints as “+tt” o n
the terminal.

‘30 (control-X) deletes the entire line.

‘32 (control-Z) signifies end of file.

‘37 (TENEX EOL) is transliterated to a ‘15 ‘12
sequence.

7 7

TENEX ROUTINES

‘177 (rubout) or ‘1 (control-A) deletes the last
character, using the DELCH JSYS to
remove it from the display (if any).

The PST.lN JSYS transliterates ‘175 and ‘176 to
‘33.

The editor activates on the characters defined
by the PSTIN JSYS (q.v.); these include
linefeed (‘12 a f ter EOL) , escape (‘33),

control-G, control-Z.

Sites other than IMSSS and SUMEX have the
following editing conventions when the channel
is Opened with the TENEX routines OPENFILE,
GTJFN, etc.:

‘22 (control-R) retypes the current contents
of the buffer.

‘30 (contro l -X) de le tes the ent i re l ine and’
echoes CR LF to the terminal.

‘32 (control-Z) signifies end-of-file.

‘37 (TENEX EOL) is transliterated to a ‘15 ‘12
sequence.

‘ 1 7 7 (rubout) o r ‘1 (control-A) deletes the
last character . Consecutive deleted
characters are echoed surrounded by
backslashes.

‘The editor activates on line feed (‘12), escape
(‘33), control-G (7) and control-Z (‘32).

This is also the action of the INTTY routine,
e x c e p t t h a t . c o n t r o l - Z i s s i m p l y a b r e a k
character to INTTY.

SAIL

The third mode is the BBN standard mode. In
this mode all characters are s i m p l y p a s s e d
through. In particular, control-Z does not
signify end of file, typing a rubout gives a ‘177,
ESC gives a ‘33, CR gives a ‘37, etc. No editing
is done by the system. This is the mode in
w h i c h a terminal other than the control l ing
terminal is accessed using any Of the functions.

SETEDIT

“OLD-MODE” + SETEDIT (CHAN, “NEW-MODE”)

If CHAN is not the controlling terminal then

SETEDIT is a no-op. Otherwise, it sets the line
e d i t i n g m o d e t o N E W - M O D E ” a n d r e t u r n s
OLD-MODE, both according to the following
code:

MODE Meaning

“D” TOPS-10 mode, as above .
“T” TENEX mode, as above
“B” (BBN bag)Byte(ing) mode, no editing

Notes:

(1) MODE SETTINGS. SETEDIT does not change
or access the parameters set by such
functions a s S F M O D , S F C O C , S T P A R ,
TTYUP, etc . Changes made wi th these
latter functions will affect editing.

(2) NON-CONTROLLING TERMINALS. Terminals
other than the controlling terminal will
have byte mode -- no editing.

(3) INCHWL no longer transliterates ‘33 to ‘175.
Previous v e r s i o n s o f TENEX Sail
transliterated ‘33 to ‘175.

TERMINAL MODE FUNCTIONS
The rout ines in th is sect ion rea l ly refer to
terminals only in the “mini-system” version of
TENEX. The argument CHAN may be either a
Sail channel number associated with a terminal,
or a terminal specifier (such as ‘100 or ‘101 for
the controlling terminal).

GTTYP, STTYP

TERMINAL-TYPE + GTTYP (CHAN, @BUFFERS);
STTYP (CHAN, AC2)

The indicated JSYS is performed. In GTTYP the
additional values returned from accumulator 2
are stored into reference parameter BUFFERS.

RFCOC, SFCOC

RFCOC (CHAN, @AC2, (aAC3);
SFCOC KHAN, AC2, AC3)

The indicated JSYS is performed.

7 8

.
SAIL-

RFMOD, SFMOD

MODE-WORD + RFMOD (CHAN);
SFMOD (CHAN, AC2)

A file’s mode word is queried or altered using
the JSYS. WARNING: some features, such as
upper case conversion, that are advertised by
BBN as being accomplished with the SFMOD
JSYS are actually accomplished with the STPAR
JSYS:

STPAR

STPAR (CHAN, AC2)

Does the STPAR JSYS, setting to AC2.

STI

STI (CHAN, CHAR)

Does the STI jsys (Simulate Terminal Input) to
channel CHAN (usually the controlling terminal),
inserting byte CHAR into the input stream.

DATA TRANSFER
The usual Sail routines for teletype I/O (see
p a g e 4 3) a r e a v a i l a b l e . I n a d d i t i o n , P B I N ,
PBOUT, and PSOUT have been added, although
they execute exactly the same code as INCHRW,
OUTCHR, and OUTSTR respectively.

TENEX ROUTINES

PBTIN

CHAR + PBTIN (SECONDS)

[IMSSS only.] Executes the PBTIN JSYS with
timing of SECONDS.

SUPPRESSING OUTPUT

I

This new section is for advanced Sail users
only, and supposes a knowledge of the pseudo-
interrupt system; see the JSYS manual and the
interrupt section of this manual.

The TOPS-10 system allows the user to type a
control-O and suspend program output to the
terminal until either another control-O is typed
or program input is requested. (See [MonCom]
for a complete description.) TENEX does not
have th is a t the system leve l , but pseudo-
interrupts provide an alternative with which the
p r o g r a m c a n r e c e i v e c o n t r o l and abort
processing as well as flush output.

TENEX Sail has complete access to the TENEX
pseudo-interrupt system. In order to facilitate
handling of control-0 an EXTERNAL INTEGER
CTLOSW has been added to the TENEX Sail
runtime system. If CTLOSW is TRUE then any
output to the controlling terminal (device “TTY”)
is flushed by the following functions:

PBOUT
PSOUT
OUT to a chrnnol open to “TTY”, or to ’ 10 1
OUTCHR
OUTSTR

CTLOSW is likewise made FALSE when input is
requested by any of the following:

INTTY

“STRING” t INTTY

INTTY does a TENEX-sty le input . (Note that
I N C H W L d o e s a TOPS-10 style input.) Up to
200 characters are transfered. The act ivat ion
character is not appended to the string, but is
p u t i n t o -SKIP, The value -1 is placed ‘into
-SKIP, if the input is terminated for exceeding
the 200 character limit. .

The normal activation characters are EOL, ESC,
control-Z; and c o n t r o l - G ; h o w e v e r , s e e t h d
section regarding line editing in TENEX Sail. At
IMSSS and SUMEX this routine uses the PSTIN
J S Y S w i t h t h e s t a n d a r d s y s t e m b r e a k
characters; no timing is available.

INCHRS INPUT
INCHRW INSTR
INCHSL INSTRL
INCHWL INSTRS

INTIN
INTTY

+ PBTIN
REALIN

TTYIN
TTY INS
TTY INL
TTYUP

Note: functions SINI, CHARIN and CHAROUT are
not a f fected. CTLOSW may be accessed by
declaring it as ,an EXTERNAL INTEGER. .

Here is an example of a control-O handler.

7 9

TENEX ROUTINES

ENTRY; BEGIN
REQUIRE "<><>" DELItlITERSj
DEFINE !=<COMMENT>;
! This program sets up a control-O interrupt
using PSI channel 0, Ievol 8.

i

EXTERNRL INTEGER CTLOSW,PSlKS;

SIIIPLE PROCEDURE CTLO; BEGIN
INTEGER USERPC,PSLl,USERINST,AC1,SAVERDDR;
LRBEL LERVE;
DEFINE PSOUT,JSYS=<‘184868088876>,

SOUT,JSYS=<' 184806880653>;

SItlPLE INTEGER PROCEOURE DEV (INTEGER JFN)j
STFlRT,COOE

HRRZ 2,JFN; ! THE JFN;
SET2 4,;
HRROI 1,4; ! PUT STRING IN 4;
tlOVS1 3,'288880; I ONLY THE DEVICE;
JFNS; 1 GET THE STRING;
tlOVEn 4'1; ! CVASC("DEV"1;

END;

! this is Sail immediate interrupt Irvol.
No dynamic strings arm accossrd.)

IF CTLOSU THEN
BEGIN

CTLOSU c FALSE; ! TOGGLE IT;
RETURN; ! AND RETURN;

END;
- STFtRf-CODE

nOVE I 1,'181;
CFOBF;

END;
OUTSTR("t0
IO;
CTLOSU c TRUE; I NO IlORE OUTPUT;

! get usor PC and addross into LEVTAB;
STRRT-COOE

nOvE I 1,'400088;
RIR;
HLRZ 2,2; ! LEVTRB RDDRESS;
nOVE 2,(2); I PC FOR LEVEL 11
novEn 2,PSLl;
nOVE 2,(2); I USER PC;
nom 2,USERPC;

END;

SAIL

! rrturn if user mode;
IF (USERPC LRNil '818888888880) THEN RETURN;

! in monitor. Return if not in the middle
of a PSOUT or (SOUT to '181);

IF NOT (
(USERINST c tlEMORYtUSERPC-ll)=PSOUT-JSYS
OR (USERINST.SOUT,JSYS RN0

((AC1 c tlEtlORY~LOCATION(PS1ACS) +. 13)
I ‘101 OR DEV(RCl)~CVfiSC("TTY"))))

'THEN RETURN;

! modify return so that output stops;
SRVEROOR l Q'lEMORYtPSL11 LRND '777777888888~

+ LOCRTION(LEtWE);
tlEtlORYtPSL1l SUAP SRVEADDR;
RETURN! ! to Sail interrupt handler;

START-CODE LERVE: JRST eSAVEADDR; END;
END;

INTERNRL PROCEDURE INITIALIZEj
BEGIN
PSIMRP(8,CTLO,8,1)~
ENRBLEW;
AT1 (8, “O”-‘188) ;
ENOj

REQUIRE INITIFILIZE INITIALI2ATION;

END;

11.5 Utility TENEX System Calls

An effort has been made to provide calls that
r e a d a n d w r i t e s t r i n g s which m a y b e
inconvenient to perform from START-CODE.
Note that the TENEX Sai l compi ler has the
TENEX JSYS mnemonics defined in START-CODE.
I n S T A R T - C O D E t h e s e definitions take
precedence over the function calls of the same
name.

CALL

RESULT + CALL (AC,ARG, “FUNCTION”)

A limited set of CALLS is simulated by TENEX
Sail. Those available are

8 0

SAIL- TE’NEX ROUTINES

EXIT
DATE
DATSAV [IMSSS only.)
iEUbNpFN [IMSSS only.]

LOGOUT
MSTIME
PJOB
PUTINF (IMSSS only.]
RANDOM [IMSSS only.]
RUN
RUNTIM
TIMER

.

I f any other FUNCTION is speci f ied then a
continuable error message is given.

CNDIR (DIRNO, “PASSWORD”)

Does the CNDIR jsys, connecting to DIRNO with
password “PASSWORD”. If “PASSWCRD” is null
then the user must have connect pr iv i leges .
T E N E X e r r o r c o d e s a r e r e t u r n e d i n -SKIP,
which is zero if no errors occurred. ’

DIRST, STDIR

“DIRECTORY” + DIRST (DIRNO);
DIRNO + STDIR (“DIRECTORY”, DORECOGNITION)

These routines c o n v e r t b e t w e e n T E N E X
directory numbers and strings. TENEX error
codes are returned in -SKIP, which is zero if
no errors occurred. For STDIR the error codes
in -SKIP, are

:
Wing does not match
atring i8 rmbi(uoue.

Note that DIRECTORY must be in uppercase for
the STDIR JSYS.

GJINF

JOBNO + GJINF (arLOGDIR, aCONDIR, @TTYNO)

The job number is returned as the value of the

call. Reference values are: the number of the
logged di rectory (LOGDIR) , the connected
directory (CONDIR), and the TENEX Teletype
number (TTYNO).

GTAD

DT + GTAD

The current date and time (in TENEX
representation) is returned.

IDTIM, ODTIM

DT + IDTIM (“DATIME”);
“DATIME” + ODTIM (DT, FORMAT)

These routines convert between TENEX internal
representation DT and string representation
DATIME. If DT is -1 in ODTIM then the current
date and time is used. If FORMAT is -1 then the
format used is “TUESDAY, APRIL 16, 1974
16:33:32”. For IDTIM, T E N E X e r r o r c o d e s a r e
returned in -SKIP, which is zero if no errors
occurred. WARNING: the IDTIM JSYS is nearly
an inverse to the ODTIM JSYS; however, the
format returned by ODTIM with FORMAT-1 will
NOT be recognized by IDTIM unless the day
(“TUESDAY, “) is first removed. Blame BBN.

PMAP (ACl, AC2, AC3)

Does the PMAP JSYS, using the accumulators
for the arguments.

RDSEG

RDSEG (sSEGPAGES, @BUFPAGES)

This funct ion returns the pages which are
specially used by the Sail runtime system. The
s t a r t i n g a n d e n d i n g p a g e s o f t h e runtime
segment are re turned in the le f t and r ight
halves, respectively, of SEGPAGES. The first
and last pages used for bufferring are returned
in the left and right halves of BUFPAGES. This
function is escape from Sail.

81

TENEX ROUTINES SAIL

Memory map, in general:

pages contents

(Compile time)
O-n impure data
4 0 0 - 4 5 0 compiler code
6 0 0 - 6 0 4 START-CODE table, if needed
6 4 0 - 6 7 0 runtime system
7 7 0 - m UDDT

(Run time)
O-n
4 0 0 - m
6 0 0 - 6 3 7
6 4 0 - 6 7 7
7 7 0 - p

impure data
code and pure data
I/O buffers
runtime system
UDDT

RUNPRG

RUNPRG (“PROGRAM”, INCREMENT, NEWFORK)

T h i s d o e s t w o e n t i r e l y d i f f e r e n t t h i n g s
depending on the value of NEWFORK. If
NEWFORK is true then a new fork is created,
capabilities are transmitted, and PROGRAM is
run in the new fork (wi th the current fork
suspended by a WFORK). INCREMENT is added
t o t h e e n t r y v e c t o r l o c a t i o n . I f NEWFORK is
false then the current fork is replaced with
PROGRAM. In this case RUNPRG is like the.

,TOPS-10 RUN UUO; if the INCREMENT is 1 then
the program is started at the CCL address. If
R U N P R G r e t u r n s a t a l l t h e n t h e r e w a s a
problem with the file. Remember to say SAV
as the PROGRAM extension.

RUNNING + RUNTM (FORK, @CONSOLE)

The running time in milliseconds for FORK is
r e t u r n e d a n d t h e c o n s o l e c o n n e c t t i m e i s
returned in CONSOLE.

8 2

SAIL

SECTION 12

LEAP DATA TYPES

LEAP DATA TYPES

by use of the DATUM construct. Declared items
have names which may be used to identify them
in expressions, etc. The simple variable whose
value is an item is called an ITEMVAR.

12.1 introduction 12.2 Syntax

In addition to the standard algol-like statements
and expressions, Sail contains an associative
data store and auxiliary facilities called LEAP.
Sail’s version of LEAP is based on the
associative components of the LEAP language
implemented by J. Feldman and P. Rovner as
described in [Feldman].

An associative store allows the retrieval of data
based on the partial specification of that data.
LEAP stores associative data in the form of
ASSOCIATIONS, which are ordered three-t uples
of ITEMS. Associations are frequently called
TRIPLES. A s s o c i a t i o n s a r e p l a c e d i n t h e
associat ive store by MAKE statements and
removed from the store by ERASE statements.
The associative searches allow us to specify
items and their position in the triple and then
have the LEAP interpreter search for triples in
the associative store which have the same items
in the same posi t ions . The interpreter will
extract the i tems f rom such t r ip les , which
correspond to the positions left unspecified in
the original search request. For example say
we had triples representing the binary relation
Father-of, and we had “made” associations o f
the form

Father-of Q John 8 Tom
Father-of @ Tom I Harry,
Father-of o Jerry II Tom,

The following syntax is meant to REPLACE not
supplement the syntax of algebraic declarations,
except where noted.

<declaration>
::= <type-declaration>
::- <array-declaration>
::= <preload,specification>
::= <label declaration>
::= <procedure-declaration>
::- <synonym-declaration>
::= <require-specification>
::= <context-declaration>

I ::= <record-class-declaration>
::= <protect,acs declaration>
::- <cleanup-declaration>
::= <type qualifier> <declaration>

1 ::- <spro~t,defsult,declaration>

<simple-type>
::= BOOLEAN
::- INTEGER
::- LIST
::- REAL

I ::= RECORD-POINTER (<classid,list>)
::- SET
::- STRING

<itemvar,type>
where Father-of, John, Tom, Harry, and Jerry
are names of items. We could then perform
searches to find the sons of Tom by specifying
to the leap search routines that we wanted to ,
find. triples whose first component was [
Fatherlof and whose third component was Tom.
Associative searches inherently produce
multiple values (i.e., both Jerry and John are
sons of -Tom). To deal with multiple values,
Leap has SETS and LISTS of items.

::= ITEMVAR
::= <simple-type> ITEMVAR
::- <array-type> ARRAY ITEMVAR
::= CHECKED <itemvar,type>
::- GLOBAL citemvar-type>

<item-type>
a’= ITEM
II- <simple-type> ITEM

Items are constants. They may -be created by
declaration or by the function NEW. Items may
h a v e a single algebraic variable, set, l ist or
array associated with them which is accessible

<array-type>
::= <simple,type> ’
::- 4 temvar-type>
::- <item-type>

8 3

LEAP DATA TYPES SAIL

<type-declaration>
::- <simple-type> <identifier-list>
::- citemvar-type> <identifier-list>
::- <item-type > <identifier-list>
::- <array type> ARRAY <array-list>
::- <array-type> ARRAY ITEM <array-list>
::- <type&alifier > <type-declaration>

<array- l ist> -- as on page 3

<procedure-declaration>
::- PROCEDURE <ident if ier>

<procedure-head>
<procedure-body>

::- <procedure-type> PROCEDURE
<ident if ier>
<procedure-head> <procedure-body>

::= <type-qualifier>
<procedure-declaration>

<procedure-type>
::- <simple-type>
::- Citemvar-type>
::- MATCHING <procedure-type>

I ::- MESSAGE <procedure-type>

<procedure-head> and <procedure-body> -- as
on page 4 except:

<simpleformal,type>
::- <simple-type>
::- citemvar-type>
::- ? <itemvar,type>
::= <simple-type> ARRAY
::- eitemvar-type> ARRAY
::- <simple-type> PROCEDURE
::- <itemvar,type> PROCEDURE

epreload,specification>, <synonym-declaration>,
<label-declaration>,

and <require-specification> as on page 3

qontext,declaration> as on page 101

12.3 Semantics

ITEM GENESIS
Although items are constants, they must be
created before they can be used. Items may
be created in three ways:

1) A D e c l a r e d I t e m m a y c r e a t e d b y
declaration of an identifier to be of
type ITEM.

2) A n i t e m m a y b e c r e a t e d w i t h t h e
NEW construct (see page 98).

3) A bracketed t r ip le i tem is created
b y t h e MAKEing o f a b r a c k e t e d
triple (see MAKE, page 90).

I tems of type 1 and 2 are the same except
those of type 1 may be re ferred to by the
identifier that is associated with them. For
example one may say . . . ITEM DAD; . . . X+DAD;
NOTE: DAD is the name of an item, not a
v a r i a b l e ! S a y i n g DAD+X is just as illegal as
saying 15+X.

I tems of type 3 are d i f ferent f rom those of
type 1 and 2. Discussion of them will be left
until the creation of associations with the MAKE
statement is discussed (page 90).

SCOPE OF ITEMS
Items do not obey the traditional Algol scope
rules. All declared items are allocated in the
o&r b lock . Al l other i tems are a l located
dynamically. All items exist until
DELETE (<item expression>) is done on the:
(see page 90 for the details of DELETE), or
until the outer block is exited at the end of the
program. HOWEVER, the identifiers of declared
i tems (type 1 above) DO obey scope ru les .
After exiting the block in which item X was
declared, it will be impossible to refer to X by
its declared name. However, X may have been
stored in an itemvar, associations, etc. and thus
still be retrieved and used.

Warning: items in recursive procedures behave
differently from variables in recursive
procedures. At each recursive call of a
procedure, the local variables are reinstantiated
(unless they were declared OWN). Items are
c o n s t a n t s . T h e r e i s n e v e r m o r e t h a n o n e
instantiation of an item around at a time.

8 4

SAIL LEAP DATA TYPES

DATUM OF ITEMS
An item of type 1 or 2 may have an associated
variable, called its DATUM. The Datum of an
item is like any variable; it may be declared to
have any type that a variable may have, except
the type Itemvar. Because an item may have
o n l y o n e d a t u m f r o m its creation until its
death, we frequently will say the “type of an
item” r e f e r r i n g t o t h e t y p e o f t h e d a t u m .
RESTRICTIONS: It is currently impossible to
m a k e e i t h e r i t e m s o r t h e i r datuma e i t h e r
Internal or External . However , the affect o f
External items can be duplicated by
manipulat ing the order in which i tems ’ are
declared (see page 87). OWN is not applicable
as items are constants, not variables. Items of
type ARRAY must be declared with constant
bounds ‘since they are allocated upon entering
the outer block.

Example declarations of items with datums:

INTEGER ITEM FATHER-OF;
STRING ITEM FOO;
INTEGER ARRAY ITEM NAMES [1:4, 1:8]; COMMENT not.

the specification of thr wry’s dimonrions;
SHORT REAL ITEM POINT;

EXTERNAL ITEM BLAT; COMMENT illogrl;
_ ITEMVAR ITEM BLAT; COMMENT illogrl;

STRING lTEMVAR ITEM BLAT; COMMENT illogrl;
REAL PROCEDURE ITEM BLAT; COMMENT ilhgrl;

PROCEDYRE ITEM BLAT; COMMENT ilkgal,
us. ASSIGN;

The syntax for variable includes the D a t u m
construct . That is , i f AGE is a declared an
I n t e g e r I t e m , then DATUM (AGE) behaves
exact ly l ike ’ an Integer var iable . I f ARR is
declared as

STRING ARRAY ITEM ARR [2:4, 1:9+2)

t h e n D A T U M (ARR) is a string array with two
dimensions of the declared size. A new array
may not be assigned to the Saturn of ARR,
though of course the individual elements of the
array may be changed. Datums obey the same
type checking and type conversion rules that
the algebraic variables of Sail do. For oxample,
when a string is assigned to an integer datum,
the integer stored in the integer datum is the
ASCII of the first character of the string.

.

ITEMVARS
An ltemvar is a variable whose value is an Item.
Just as the s ta tements “X+3; Y+X” and “Y4-3”
are equivalent with respect to Y, the statements
“X+DAD; Y+X” and “YtDAD” are equivalent with
respect to Y, if X and Y are itemvars, DAD an
i tem. The d ist inct ion between i temvars and
items is identical to the distinction between
integer variables and integers. A n i n t e g e r
var iable may only conta in an in teger and a
variable declared ITEMVAR may only contain an
item. This may be confusing since historically,
in teger var iables have a lways been ca l led
INTEGER rat her t hrn INTECERVAR.

Properly speaking, one should have
INTEGERVAR A R R A YS i n s t e a d o f I N T E G E R
A R R A YS. Originally, Sail only allowed ITEMVAR
A R R A YS. However, SO many people found this
confusing that now one may say ITEM ARRAY,
and i t wi l l be in terpreted to mean ITEM/AR
ARRAY. Similarly, an Item procedure is exactly
the same as an ltemvar procedure.

An i temvar may conta in i tems of any type.
However, when one says DATUM (ITMVR) where
ITMVR is an itemvar, the compiler must know
the type of the datum of the item (i.e. the type
of the item) contained in the itemvar so that
the the correct conversions, etc. may be done.
Thus, one may declare itemvars to have the
same types that are legal for items. If one has
declared STRING ITEMVAR ITMVR, then the
compi ler assumes that you have stored an
string item in ITMVR, and and will treat
DATUM (ITMVR) as a string variable.

An ltemvar may be declared CHECKED if the
u s e r d e s i r e s t h e t y p e o f i t e m v a r c h e c k e d
against the type of the datum of the i tem
expressions ass igned to i t . That is , on ly a
string item could be stored i n a C h e c k e d
String jtemvar. If the itemvar is not declared
Checked, i t may have an i tem of any type
assigned to it and their types need not match at
all. This can be very dangerous. For example,
an integer array item might be assigned to a
string itemvar. When the datum of this itemvar
is later assigned to an integer variable, say, Sail
will try to treat the array header as a s t r i n g
pointer and get very confused. The runtime
rout ine TYPEIT, page 123, returns a code for
the type of its argument, and can be useful for
avoiding type matching errors with un-checked
itamvars.

8 5

LEAP DATA TYPES

GLOBAL itemvars are a special kind for SUAI
global model users. Global model operation
allows several jobs to share a data segment,
and GLOBAL itemvars are used to build the data
structures in this segment. MESSAGE
procedures are also related to global model
operations. These features have fallen into
disuse.

EXTERNAL, OWN and INTERNAL ltemvars are
legal. ‘SAFE applies to either the array of an
array itemvar, the array of an itemvar array, or
both arrays of an array itemvar array.

ltemvars obey traditional Algol block structure.
Upon exiting the block of their declaration, their
names are unavai lable and the i r s torage is
real located. However , the i tem stored in an
itemvar is not affected -- it continues to exist
until DELETEd or until the end of the program.

ltemvars are initialized to the special item ANY
at the beginning of one’s program.

SETS AND LISTS
Sets and Lists are collections of items. There
are two distinctions between Sets and Lists: a
list may contain multiple occurrences of any
i tem whi le a set conta ins at most a s ingle
instance of an item. Second, the order in which
items appear within a list is completely within
the control of the user program, while with a
set, the order is fixed by the internal

‘representation of the items. Lists and Sets do
not care what type if any the datums of their
members are.

L i s t a n d S e t A r r a y s , I t e m v a r s , I t e m s , a n d
Procedures are all legal, as well as External,
Own and Internal Sets and Lists. Like itemvars,
the scope of Set and List variables is the block
they were declared in. Exiting that block does
not destroy the items stored in the departed
sets or lists.

ASSOCIATIONS
Perhaps the most important form of storage of
items is the Association, or TRIPLE. Triples of
items may be written into or retrieved from a
special s t o r e , t h e a s s o c i a t i v e s t o r e . T h e
method of storage of these triples is designed
to facilitate fast and flexible retrieval. Sail uses
approximately two words of storage for each
triple in the associative store.. There is at most
one copy of a triple in the store at any tirne.
Once a triple has been stored in the associative

8 6

SAIL

store, its component items can not be changed,
a l though an approximat ion to th is can be
obtained by erasing the association then making
a new association with the altered components.
You will note there is no syntax for declaring a
triple. Triples can only be created with the
MAKE statement. In the examples which follow,
a triple is represented by :

AQQEV

where A, 0, and V represent the items stored in
the association. T h e a s s o c i a t i v e s t o r e i s
accessed by the FOREACH statement, derived
sets, and binding triples (see Searching the
Associative Store, page 91).

PROCEDURES
Itemvar, Item, List, and Set procedures all exist.
ltemvar procedures may be CHECKED if one
desires the item RETURNed to have the same
type as the type of the l temvar procedure .
Otherwise, the compiler only checks to see that
the value returned to an itemvar procedure is
an itern.

Every type except Item may be used in formal
parameter declarations; items are constants yet
pararneters always have something assigned to
them in the procedure call. Since you can’t
assign something to a constant, you can’t have
item parameters.

WARNING: when using Checked Reference
ltemvar formals, no type checking is performed
as the actual is assigned to the formal at the
procedure call. However, type checking,, will
only be done during the procedure, and when
the formal is assigned to the actual upon the
(normal) exit of the procedure.

IMPLEMENTATION
Each Item is represented by a unique integer in
the compiler. The numbers are assigned in the
order the i tems are declared, e .g . the f i rs t
declared item gets 1, the second gets 2, etc.
(Actually, Sail has already declared 8 items that
it needs, so user item numbers start with 9.

I

REQUIRE n ITEM-START changes the number at
which user items start (only useful for SUAI
global model users). Lexical nesting is not
observed; it is only the sequence in which the
declarations are scanned that determines their
numbers. The NEW function does not affect this
assignment of numbers. Items created by the
New function are assigned the next available
number at the time of the execution of the New.

SAIL

.

Those who use separately compiled procedures
(see page 12) may wish to have declared items
common to both programs. However, Internal
and External i tems do not ex ist . The same
effect may be achieved by carefully declaring
the desired items in the same order in both
programs so that their numbers match. The
message “Warning -- two programs with items
in them.” will be issued at the begining of
execut ion, and may be ignored i f you are
cer ta in the i tems are declared in the same
relative positions. No checking of names, types,
arrays bounds, etc. is done, so be very careful.

I t e m s o c c u p y n o s p a c e (n e i t h e r d o e s t h e
constant integer 15). The numbers ascribed to
items are stored in ltemvars and Associations.
l temvars are s imply a word of s torage. An
association is two words of storage, one with
three 12 bit bytes, each containing the number
of one of the items of the association, and a
second word containing two pointers relating
t h e a s s o c i a t i o n t o t h e a s s o c i a t i v e s e a r c h
structure. Since the number of an item must fit
in 12 bits, the number of items is limited to
about 4090.

The number of an item may be retrieved from
the i tem as a integer wi th the predeclared
f Onct ion CVN (<item-expression>). The item
r e p r e s e n t e d b y a c e r t a i n integer may be
r e t r i e v e d b y the predeclared function
CVI (<algebraic-expression>). CVN and CVI

’ should only be used by those who know what
they’re doing and have kept themselves up to
date on changes in Leap.

LEAP DATA TYPES

8 7

LEAP-STATEMENTS SAIL

I SECTION 13

LEAP STATEMENTS

13.1 S y n t a x

<leap-statement>
::= <leap-assignment-statement>
::- <leap-swap-statement>
::- <set-statement>
::- <list-statement>
::= <associative-statement>
::= <foreach,statement>
::= <suc,fail,statement>

<leap-assignment-statement>
::= citemvar-variable> +

<item-expression>
::= <set-variable> + <set-expression>
::- <list-variable> + <list-expression>

<leap-swap-statement>
::- qitemvar-variable> c)

<itemvar,variable>
::- <set-variable> *) <set-variable>
::- <list-variable> * <list-variable>

<set-statement>
::= PUT <item-expression> IN

<set-variable>
::- REMOVE <item-expression> FROM

<set-variable>

<list-statement>
::- PUT <item-expression> IN

<list-variable>
<location,specification>

::= REMOVE <item-expression> FROM
<list-variable>

::- REMOVE ALL <item-expression> FROM
<list-variable>

<locat ionjpecification>
::= BEFORE <element,location~
::- AFTER <element-location>

<element,location>
::- <item-expression>
::- <algebraic-expression>

<associative-statement>
::- DELETE (<item-expression>) .
::- MAlfE <triple>
::- ERASE <triple>

<triple>
::- <item expression> e <item-expression>

8 &m,sxpression>

<foreach,s?atement>
::- FOREACH <binding-list> SUCH THAT

<element-list> DO <statement>
::- NEEDNEXT <foreach,statement>

<binding-list>
::= <itemvar,variable>
::- <binding-list> , <itemvar,variabte>

<element,list>
::- <element>
::- <element-list> AND <element>

<element>
::- <item-expression> IN

<list-expression>
::- (<boolean-expression>)
::- <retrieval-triple>
::- <matching-procedure-call>

<retrieval-triple>
::- <ret-trip-element> e

<ret-trip-element>
l <ret-trip-element>

W&tr ip-element>
::- <item-expression>
::- <derived-set>

<matching-procedure-call>
::= <procedure-call>

8 8

SAIL LEAP STATEMENTS

<sue,fail-statement>
::- SUCCEED
::- FAIL

13.2 Rest rid ions

SUCCEED and FAIL statements must be lexically
nested inside a matching procedure to be legal.

13.3 Semant its

ASSIGNMENT STATEMENTS
Assignment statements in Leap are similar to
those in Algol. Itemvars, Set variables, and List
variables may be assigned item, set and list
expressions, respectively. Only one automatic
coerc ion is done: a set expression may be
assigned to a list variable. NOTE: lists may not
be assigned to set variables (use CVSET).

The type of an itemvar is checked against the
type of the item expression assigned to it if
and only if the itemvar is declared Checked. If
a typed i tem is ass igned to an un-Checked
itemvar of different or no type, the datum is
not affected. Assign an integer item to a string

. itemvar and the string itemvar will now contain
an item with an integer datum. Sail will not
know that you have in effect switched the type
of the datum and will get very confused if you
later try to use the datum of the itemvar; it will
treat the integer as a pointer to a two word
string descriptor in this case.

DATUM (X) is legal only when X is a typed item
expression, namely an item expression that the
c o m p i l e r c a n d i s c o v e r t h e t y p e o f (n o t
COP (<set>) for example). See page 128 for the
BNF of typed item expressions. DATUM (X) is
syntactically a variable. It has the type of the
typed item expression, X. If X has an array
type, then DATUM (X) should be followed by
[<subscript-list>) Appropriate coercions will
be done (i.e., string to integer, integer to real,
etc.) just as w i t h r e g u l a r variables in
expressions.- NOTE: the user is responsible for
seeing that the datum of an item expression
really is the type that Datum thinks it is (i.e.,
Datum of a Real itemvar that has had a string
item stored in it will give you garbage).

PROPS (X), where X is an item expression, is
legal regardless of the type of X. X may even
evaluate to a bracketed triple item, procedure
item, or event item. PROPS (X) is syntactically
an integer variable. It is limited to integers n
w h e r e 0 5: n 14095. I f n e g a t i v e (i . e . t w o ’ s
complement) integers or integers iar.ger than
4095 are ,assigned to a PROPS, only the right
12 bits are stored. The rest of the integer is
lost.

PUT
Sets and lists are initially empty. One may put
items in them with the PUT statement. “PUT
<item expression> I N < s e t v a r i a b l e > ” d o e s
exactly what it says.

“PUT <i tem expression> IN < l is t var iable>
BEFORE <algebraic expression>” evaluates the
item expression, e v a l u a t e s t h e a l g e b r a i c
expression and coerces it into an integer, say n,
then puts the item into the list at the nth
position, bumping the old nth item to the n+lth
position, and so on down the list. This
increases the length of the list by one. “PUT
item IN list AFTER n” places the item in the
n+lth position and bumps the old n+lth item
down to the n+2th position, and so on. If n < 0
o r n > (1 + l e n g t h - o f - l i s t) , t h e n a n e r r o r
message is given. The special token I’m” m a y
be used in the expression for n to stand for the
length of the list.

“PUT < i tem expression 1~ IN <list variable>
BEFORE <item expression 2>” cause a search to
be made of the list for the item of <item
express ion 2>. If it is found, the item of <item
expression l> is placed in the list immediately
ahead of the item found by the search. “PUT
item IN list AFTER item” proceeds the same way,
but puts the first item in the list immediately
following the second item. If the second item is
not an element of the list, a BEFORE will put the
first item at the begining of the list, while an
AFTER will put it at the end of the list.

REMOVE
To remove an item from a set or list, one may
use REMOVE. “REMOVE item FROM set” does
just what it says. If the item to be removed
from the set does not occur in the set, this
statement is a no-op.

“REMOVE n FROM list” removes the nth item
from the list. The old n+lth item becomes the
nth, and so forth. An error is indicated if n I 0

8 9

LEAP STATEMENTS SAIL,

or n > length-of-list. As before, 00 should stand
for the length of the list. However,

“REMOVE item FROM list” removes the first
occurrence of the item from the list. If the item
is not found, this statement is a no-op.

“REMOVE ALL i tem FROM l is t” removes a l l
occurrences of the item from the list.

,DELETE
I t e m s a r e r e p r e s e n t e d b y u n i q u e i n t e g e r
numbers in Sai l . Due to the overwhelming
desire to store an association in one word of
storage, these unique numbers are limited to 12
bits. Thus the total number of items is limited
to 4090, The DELETE statement allows one to
free numbers for reuse. it is also the only way
to get rid of an item short of exiting the
program. WARNING: The Delete statement in no
way alters the instances of the Deleted items
which are present in sets, lists, associations, or
itemvars. The user should be sure that there
are no instances of the Deleted item occurring
in itemvars, sets, lists or associations. Even
saying DELETE (ITMVR) where ITMVR is an
itemvar with an item to be deleted in it will not
remove the i tem f rom ITMVR; one must be
careful to change the contents of ITMVR before
using it again.

MAKE
The MAKE statement is the only way to create
Associat ions (Tr ip les) and add them to the
associative store. if the association already
exists in the store, no alterations are made.
The argument to the Make statement is a triple
of item expressions:

MAKE item1 Q item2 m item3
MAKE item1 Q itemvrr 1 S NEW
MAKE itemvrr,arrry[23) @ item1 fi itomvar2

The component item expressions are evaluated
lef t to r ight . The three items that the three
expressions evaluate to are then formed into an
association, and the association is hashed into
the associa t ive store . The i tem expressions
must be constructive, that is, one may use the
N E W function but not the ANY or BINDIT items
(see NEW, page 98, ANY, page 99, and
BINDIT, page 99).

BRACKETED TRIPLE ITEMS
Items may be created by declaration, by the
NEW function, or by using BRACKETED TRIPLES

in Make statements. A Bracketed Triple itern
may not have a datum, but may have a PROPS
or a PNAME (see page 124 for pnames, page 89
for props). Instead, a Bracketed Triple item has
an Association connected to it. One creates a
Bracketed Tr ip le i tem by execut ing a M a k e
statement:

MAKE item1 Q [item2@item3Pitem4] $ item5

w h e r e t h e itemN a r e item expressions.
“[item2@item3Gtem4]“ is the Bracketed Tr ip le
item, and of course need not always be the
second component 0f the association. The
association connected to the Bracketed Triple
item is “item2 0 item3 i item4”. T h e a b o v e
Make statement actually creates two triples and
one item. Namely, the associations

item1 Q
item2 @

itomXX E item5
item3 E item4

and the i tem “itemXX” which is a Bracketed
Triple item and has the second association
connected to it . One c a n access a Bracket
Tr ip le i tem, wi th the an associat ive search
called the Bracketed Triple item Retrieval:

i tmvar c [itm2 8 itm3 i itm4);
COMMENT itmvrr now contains itmXX;

The Bracket Triple construct may be used in
any expression. See page 92.

Having “itmXX”, one may access the items of the
association connected to with the predeclared
functions FIRST, SECOND, and THIRD (see page
125 for more in format ion on these runtime
functions):

FIRST GtemXX) is item2
SECOND GtomXX) is item3
THIRD. (itomXX) is itom

ERASE
The way to remove an association from the
associative store and destroy it is to ERASE it:

ERASE item1 Q item2 8 itom

where the itemN are i tem express ions. The
/

item expressions m u s t b e r e t r i e v a l item

.
9 0

SAIL

expressions; that is, one may use the ANY item
but not the NEW function or the BINDIT item
(see ANY, page 99 , and NEW, page 9 8 , a n d
BINDIT page 99). Using ANY as one, two, or
three of the i tem express ions a l l o w s emany
associations to be erased in one statement. If
the association to be erased does ‘not exist,
Erase is a no-op.

Whenever one Erases an association, none o f
t h e .items of the association are deleted. In
particular, when one Erases an association
that has a Bracketed Triple item as one of its
components, the Bracketed Triple item is not
deleted. Furthermore, the association
connected to the Bracketed Triple item is not
automat,ically erased by erasing an association
containing a B r a c k e t e d T r i p l e i t e m . The
following Erase erases only one association:

E R A S E itom o [itom2@itom3hm4] 8 itom

However, erasing the association connected to a
Bracketed Triple deletes the item. Deleting the
Bracketed Tr ip le i tem DOES NOT erase the
association connected to it.

13.4 Searching the Associative Store

Flexible searching and retrieval are the main
motivations for using an associative store. It
follows that this is the most important section
of the Leap part of this m a n u a l . It is a r a r e
Leap program that does not use at least one of
the searches described below.

Four methods of searching the associative store
exist in Sail:

Binding Booleans
Derived Sets
Bracketed Triple item retrieval
Foreach Statements

T h e f i r s t t h r e e a r e p r o p e r l y p a r t o f t h e
d i s c u s s i o n o f L e a p Expressions in the next
chapter, but are included here for
completeness.

Throughqut - t h i s s e c t i o n w e w i l l u s e t h e
following notation for rn associatjon:

AoOiV

LEAP STATEMENTS

where A, 0 and V s tand for the “at t r ibute” ,
“object” and “value” items of an association.

The terms “bound” and “unbound” will f ind
heavy use in this section. Bound describes an
itemvar that has an item assigned to it.
Unbound describes an itemvar that, at. this time
in the execution of the program, has no item
bound to it. T h e o b j e c t o f s e a r c h i n g t h e
associative store is usually to bind unbound
itemvars to specific, but unknown, items. If the
itemvar to be bound was dec lared Checked,
t h e n t y p e c h e c k i n g will b e d o n e , a n d t h e
appropriate error message will be issue if the
binding item does not have the same type as
the itemvar.

Throughout this section, references to item
expressions will always mean retrieval item
expressions. D O not use NEW in such
expressions.

A hashing a lgor i thm is used in s tor ing and
retrieving associations in Leap. The user can
increase the speed of associative searching or
decrease his core image by using the REQUIRE n
BUCKETS construct to control the size of his
associative search hash table to reflect the
number of associations he will be using. A hash
table will be allocated with (2tm) hash codes
where m is the smal lest in teger such that
(2rm) 1 n . S a i l i n i t i a l i z e s t h e h a s h s i z e t o
‘1000.

BINDING BOOLEANS
A Binding Boolean searches the associative
store for a specified triple, returning true if
o n e c a n b e f o u n d , a n d f a l s e o t h e r w i s e . A
Binding Boolean is a triple:

itml Q itm2 0 itm3

w h e r e “itmN” is one of three things: an item
expression, o r t h e r e s e r v e d w o r d “ B I N D ”
f o l l o w e d b y a n i t e m v a r , o r t h e t o k e n “?”
followed by an itemvar. An item expression as
a component of the Binding Boolean means that
component of the triple that the boolean finds
must be the item specified by the item
e x p r e s s i o n (u n l e s s t h e i t e m e x p r e s s i o n
evaluates to the item ANY, which specifies that
any item is okay). If a “BIND” itemvar is the A,
0 or V of the triple, then the Binding Boolean
will attempt to find an association which meets
the constraints imposed by the item expression
A, 0 or V components, and then binds to the

91

LEAP -STATEMENTS SAIL

“ B I N D ” i t e m v a r t h e i t e m s occuring i n t h e
corresponding positions of the association that
t h e B i n d i n g Boolean found. If no such
association can be found, then the Binding
Boolean returns FALSE and leaves the “BIND”
i temvars wi th the i r prev ious va lues. If “?”
precedes an i temvar , then the i temvar wi l l
behave like a “BIND” itemvar if it is currently
conta ins BINDIT, but will behave like an item
expression if it is bound to some other item
than BINDIT. Example:

IF Father o ?Son I ANY THEN PUT Son IN Sonsot;
IF -Father o BIND Son c Bob THEN CHILDLESS (Bob);
ERCHEK c Father @ COP(Sonsrt) a ANY;

DERIVED SETS
Derived Sets are quite simple: “Foo @ Garp”
where Foo and Garp are item expressions, is
the set of all items X such that Foo @ Garp = X
exists.
such

“Gars i Sister” is the set of all items X
X @ Garp m Sister exists.

“ FOO ’ Sister” is the set of all items X such that
F OO @ X l Sister exists. Examples:

Dadset c Father @ ANY;
Danson c Father ’ Dan;
News t (Son t Dad) Il attset;

ANY specifies “I don’ t care” to the search.
BINDIT has no special meaning to the search,
and behaves like any other items. Since BINDIT
can never appear in an association, this means
the set returned will always be the empty. set
PHI.

BRACKETED TRIPLE ITEM RETRIEVAL
A Bracketed Triple item can be referenced by
specifying the association it is connected to.
For example,

Itmvrr t [itml o itm2 p A N Y)
PUT (ANY 8 ANY 8 ANY) IN Brrcsrt
IF Foo @ Garp i [itml 4~ itm2 f ANY] THEN . . .
Itmvar c [i t m l 4D [itm2 @ itm3 I itm4] E itm5]

where itmN is any item expression not
c o n t a i n i n g N E W o r BINDIT. A N Y m e a n s y o u
don’t care what item occupies that component.

I

If the designated Bracketed Triple is not found
then BlNDtT is returned and no error message is
given. _

THE FOREACH STATEMENT
This statement is the heart of Leap. It is similar
to the FOR statement of Algal in that a
statement is executed once for each binding of
a variable. In this semi-schematic example,

FOREACH X SUCH THAT <element> AND . . . AND
<elementa DO <statement>;

the <statement> is executed once for each
binding of the itemvar X. The <element>s in the
element list (i.e. <element> AND...AND <element>)
determine the b indings of the i temvar , and
h e n c e h o w m a n y t i m e s t h e <statement> i s
executed. If the <element% are such that there
is no binding possible for X, then the
<statement> is never executed. Like a Sail FOR
statement , one may use DONE, NEXT, and
CONTINUE within the <statement>. As before,
when one uses a NEXT inside the loop, the
word NEEDNEXT must precede the FOREACH of
t h e Foreach t h a t o n e w a n t s c h e c k e d a n d
possibly terminated. See pages 18, 19, and 19
for more information about Done, Next, and
Continue.

Restriction: Jumping (i.e. with a GO TO) into a
Foreach is illegal. However, it is legal to jump
out of a Foreach, or to jump around within the
same Foreach.

Foreach statements differ from For statements
in that more than one itemvar may be included
to be given bindings:

FOREACH X, Y, 2 SUCH THAT <element>....

X, Y, and Z are called Foreach itemvars. Just as
one must declare the integer I before using it in
the Sail For statement

FOR I t 1 STEP 2 UNTIL 21 DO...

so must one declare Foreach itemvars before
using them in Foreaches. Foreach itemvars are
no more than normal itemvars receiving special
assignments; they may have any type. I f a
Foreach i t e m v a r t h a t h a s b e e n d e c l a r e d
Checked is assigned an item by the search that
has a different type than the Checked itemvar,
an error message will result.

Foreach itemvars differ from For variables in a
more radical way. It is possible to specify to

9 2

SAlt LEAP STATEMENTS

the Foreach that a certain Foreach itemvar be a
vrrirblo to the search only on the condition
that that the itemvar contains the special item
BINDIT et the time the Foreach is cal led. One
precedes such itemvars with the “?” token. For
example:

FOREACH ?X, ? Y, 2 SUCH THAT demontx...

If X contains BINDIT but Y does not when this
Foreach starts execution, then the search will
be conducted exactly as if the statement

FOREACH X,2 SUCH THAT <element>....

were the Foreach specified. The itemvar X will
then act just l ike an ordinary , non- foreach
i t e m v a r t h a t w a s b o u n d p r e v i o u s t o t h e
Foreach. A l l Foreach i t e m v a r s m a y b e “?”
itemvars if this is desired.

There are four different types of <element>
that may be used in foreach element lists:

Set Membership
Boolean Expressions
Retrieval Triples
Matching Procedures

The order of the <element>s in the element list
is very important, as we shall see.

Terminology: we say that a certain binding of
t h e t h e Foreach i t e m v a r s “ s a t i s f i e s ” a n
<element>. I f t h a t b i n d i n g s a t i s f i e s e a c h
<element> of the element list, then we say it
“satisfies the associative context”. A fancy way
of refering to the element list is “associative
context”. We also refer to the collection of
bindings that satisfy the associative context a s
the “satisfier group” of the Foreach.

.

The execution of a Foreach proceeds as follows.
After initialization, the Foreach proceeds with a
search specified by the first <element> of the
element list. If a bind ing can be found that
s a t i s f i e s t h e f i r s t <element>, t h e Foreach
proceeds forward to the new <element> of the
list and tries to satisfy it, and so on. When the
Foreach-can not satisfy an <element>, it “backs
up” to the previous element and tries to get a
different binding. If it can’t find satisfaction
there, it backs up again and tried again to get a
different binding. When a Foreach proceeds
forward off the end of the element list (Lo. the

a s s o c i a t i v e c o n t e x t i s s a t i s f i e d) t h e n t h e
<statement> is executed, and the Foreach backs
up to the last <element> of the element list.
When the Foreach backs up off the left end of
the element list, the Foreach is exited.

When a Foreach is exited by backing up off the
left, the Foreach itemvars are restored to the
last satisfier group bound to them, regardless
of what the <statement> may have done. If the
associative context was never satisfied, then
the Foreach itemvars have the values that they
h a d b e f o r e t h e Foreach. W h e n a Foreach i s
exited with a GO TO, DONE, or RETURN, the
Foreach leave the itemvars with the bindings
they had at the GO TO, or whatever, including
any modifications that the <statement> may
have made to them.

THE LIST MEMBERSHIP <ELEMENT>
[In the following, one may also read “set” for
“list”; Sail automatically coerces set expressions
into list expressions.] This <element> does not
search the associative store to bind an itemvar,
but merely binds it with an item of a specified
list. In the Foreach,

FOREACH X 1 X IN L DO <statement>;

(here we have used the Sail synonym “1” for
“SUCH THAT”), the Foreach itemvar X is bound
successive ly to each e lement o f the set L ,
starting at the beginning of the list. If an item
occurs n times in L, then X will be bound to that
i tem n t imes in the ’ course of the Foreach.
Thus, the number of satisfiers to the above
Foreach is LENGTH (L).

In the current implementation of Leap, there is
a difficulty that should be pointed out. If inside
t h e < s t a t e m e n t > , o n e c h a n g e s L b y l i s t
assignment, Removes, etc. in such a way as to
r e m o v e t h e n e x t i t e m o f t h e l i s t t h a t t h e
Foreach i temvar would have been bound to ,
Leap may go crazy. Foreach searches look
one ahead and save a pointer to the next items
t o b e b o u n d t o t h e Foreach i t e m v a r s . T h i s
allows one to remove the items of the current
bindings of the Foreach itemvars from lists or
whatever, but makes other removals hazardous.
For example,

FOREACH X I X IN L DO REMOVE X FROM L;

will work, but

9 3

LEAP STATEMENTS

I
’ ‘,

SAIL

PUT V IN L BEFORE FOO,
FOREACH X 1 X IN L DO REMOVE V FROM I;

will probably fail. No error checking is done.

kf/heneVer t h e Foreach i t e m v a r o f a l i s t
<element> has been bound previously, the list
el~rnent behaves like a boolean. It does not
rebind the itemvar but only checks to see that
it is in the list. For example,

FOi?EACH X I X IN L AND X IN IL DO <statement>;

X is bound by the <element> “X IN L”.
< e l e m e n t > “X IN LL” is satisfied if the item
containedsin the itemvar X is in the list LL.

If two different Foreach itemvars are used with
two different lists, i.e.

FOREACH X,Y 1 X IN L AND Y IN IL
DO <statement>;

then af ter execut ion of the <statement>, t he
Foreach will go back the last <element> that
searches for bindings, in this case “Y IN LL” and
gets a new binding for Y. It is only on failure
of this search that the Foreach goes back to
the- first <element>, “X IN So, and gets a new
binding for X. Thus the <statement> will be
executed once for each possible X,Y pair. In
the Foreach,

FOREACH X,Y 1 X IN L AND Y IN L . ..i

X and Y will be bound to all possible pairs of
elements in L. This includes pairs with
d u p l i c a t e e l e m e n t s , l i k e (a,a). Different
orderings of the same elements will NOT be
ignored. Thus, pairs l ike (a,b) and (b,a) will
each be a satisfier group sometime during the
Foreach. Furthermore, if the list L contains
duplications of the same item, identical pairs
w111 occu r i n p ropo r t i on t o t he number o f
oclplications. T h a t i s , regardless of the
d,plications w i th in the l i s t , t he number o f
c.c--:,sf!er g r o u p s t o t h e Foreach a b o v e i s
LE:ZTH (L)1‘2.

ThE BOOLEAN EXPRESSION <ELEMENT>
Any Saii booLean expression may be used as

an <element> in the Associative Context of a
“oreach if it is inclosed b y p a r e n t h e s e s . A
Boolean Expression <element> is satisfied if it is
TRUE. Note that the boolean expression must
rldVe parentheses around it.

WARNING: Foreach itemvars can not be bound
by a Boolean Expression <element>. Therefore,
al l i temvars used in a Boolean Expression
<element> must b e b o u n d b y p r e v i o u s
<element% in the e lement l i s t . A Boolean
Expression <element> with unbound Foreach
itemvars in it causes an error message.,

THE RETRIEVAL TRIPLE <ELEMENT>
To search the associative store with a Foreach,
one uses the Retrieval Triple <element>. A
Retrieval Triple is satisfied if a binding of the
Foreach itemvars can be found such that t :.
t r ip le is an extant associat ion. I f al l of tilt;
itemvars of the Retrieval Triple <element> were
bound previous to the execution of the
Retrieval Triple <element>, then the Triple does
no fur ther b inding; i t is satisfied if the
specified triple is in the associative store. For
example,

FOREACH X 1 FATHER Q TOM E X AND
X IN PTA-SET DO <statement>;

FOREACH X] X IN PTA-SET AND
FATHER 8 TOM f X DO <statement>;

The two Foreaches have the sarne ef fect .
However, in the first case, X is bound by a
search of the associative store for any triple
that has FATHER as its attribute component, and
TOM as its object component. When such a
triple is found, X is bound to the itern that is
the value component. Then, if X is in the
P T A - S E T , t h e Foreach le ts the sta:elrlent
execute. I f X is not” in PTA-SET, therl tlw
Foreach backs up and t r i es t o f i nd a n o t h e r
triple with FATHER as its attribute and TOM a=
its value. In the second Foreach, X is bound
w i t h a n i t e m f r o m P T A - S E T , t h e n t h e
associative store is checked to see that the
triple FATHERsTOMzx, where x is the binding of
X, is in the store. If it is, the <statement> is
executed, otherwise the Foreach backs up and
gets a different item from PTA-SET and binds
that to X. Assuming that Tom has oniy one
father, the first search is much faster.

Using ANY in a Retrieval Triple indicated that
you don’t care what item occupies that position.
For instance, in

FOHEACH X 1 FATHER 8 ANY E X DO <statement>;

X is bound successively to all fathers.
However, if the associative store included the
following three associations,

9 4

SAIL LEAP SJATEMENTS

FATHER QP KAREN i PAUL
FATHER QD LYNN i PAUL
FATHER QD TERRY 8 PAUL

then X would be bound to PAUL only once, not
thrice. BINDIT has no special meaning to the
search. S ince BINDIT can never appear in an
association, a Retrieval Triple containing it will
cause the search to always fail.

Different kinds of associative searches proceed
with different efficiencies. Listed below in
order of decreasing efficiency are the various
forms of Retrieval Triple <element% that are
legal. A, 0 , and V represent e i ther bound
Foreach itemvars or items from explicit item
expressions in the triple. x, y, and z represent
u n b o u n d Foreach itemvars or the item ANY.
(note that x Q x z V is really x Q 0 = V, and so
on) . The two forms of the L ist Membership
<element> are included for comparison.

x IN L All items x in the list L.
Ao01x Only the vrluo ie fro..
xQPy8V Attribute and object are fro..
A IN L Vorificrtion that itom A is in lirt L.
AoO@V Verification that the triplo

ir in the store
- AoxmV Only the objrct ir free.

xaomv Only the rttributo is fro..
Amwry Object and vrluo ara frrr.
xuBofiy Attribute and value &re from.
xayrz Attribute, vrluo rnd objrct wo from.

N o t e t h a t MAKEing a n a s s o c i a t i o n i n s i d e a
Foreach may or may not a f fec t subsequent
bindings. For example, in

FOREACH X,Y I Link Q X i Y DO
MAKE Link @ X E Newlink;

i t is uncerta in whether Y wi l l ever receive
Newlink as its binding or not.

The. A, 0, and V used in a Retrieval Triple of a
Foreach may be a derived set expressions as
well as item expressions. For example,

FOREACH X, Y I Link Q (FatherBY) I X DO

ERASE in the <statement> of a Foreach that
binds any of its itemvars with Retrieval Triples
may cause problems. This is similar to REMOVE
u s e d i n F o r e a c h e s w i t h L i s t M e m b e r s h i p
<element% controling some bindings. ERASE

can only be guaranteed to to work safely if the
association erased is the one we just got a
binding from, e.g.

FOREACHX IA @Oa X DO ERASE A QP 0 E X;

or if the association erased could not possible
be used for a binding of a Foreach i t e m v a r ,
such as,

FOREACH X 1 Link @ X B Node DO
ERASE Nod. @ X 8 ANY;

Foreaches look one ahead to the next binding
of its itemvars, and leaves a pointer to those
associations. If you Erase a n y o f t h o s e
a s s o c i a t i o n s , t h e Foreach g e t s l o s t i n t h e
boondocks. NO error checking is done.

However, as long as the associative store is not
changed during the execution of the Foreach, a
Retrieval Triple will not itself repeat a
particular set of bindings that it bound before.

THE MATCHING PROCEDURE <ELEMENT>
Matching Procedures are the most genera l
search mechanism in Leap. They also provide
a convenient method of writing coroutines.

A. MATCHING Procedure is very similar to a
boolean procedure (in fact outside of Foreach
associative contexts, it behaves like a boolean
procedure and may be called within
expressions, etc.). I t must be declared type
MATCHING. It may not be declared SIMPLE. The
formal parameters of a Matching Procedure may
include zero or more “?” itemvars (pronounced
“question itemvars”) which may have any datum
type but may not be VALUE or REFERENCE.
These parameters correspond roughly to either
call by value or call by reference, depending on
the actual parameter when the procedure is
called. When the actual parameter is an item
expression or a bound itemvar the parameter is
equivalent to a value parameter. However, if
the actual parameter is an unbound Foreach
i temvar , then the parameter is t reated as a
r e f e r e n c e p a r a m e t e r , a n d o n e n t r y is is
initialized to the special item BINDIT.

Matching Procedures are exited by SUCCEED
a n d F A I L s t a t e m e n t s i n s t e a d o f R E T U R N
statements. When used outside of an
associative context, SUCCEED corresponds to
RETURN(TRUE) a n d F A I L c o r r e s p o n d s t o
RETURN(FALSE) [this is not strictly true when

9 5

LEAP STATEMENTS e SAIL

t h e m a t c h i n g p r o c e d u r e i s s p r o u t e d a s a
process -- see page 1061. Inside an associative
context, Succeed and Fail determine whether
the Foreach is to proceed to the next
<element> of the element list or to backup to
the previous <element> of the element list.
When the Foreach backs up into a Matching
Procedure, the procedure is not recalled, but
resumed, at the statement following the last
Succeed executed. On the other hand, when a
Foreach p r o c e e d s f o r w a r d i n t o a M a t c h i n g
Procedure, t h e p r o c e d u r e i s c a l l e d , n o t
resumed.

W h e n a M a t c h i n g P r o c e d u r e i s t h e l a s t
< e l e m e n t > o f the associative context,
Succeeding will cause the <statement> to be
executed; the Foreach then backs up into
the Matching Procedure , and the Matching
P r o c e d u r e i s r e s u m e d a t t h e s t a t e m e n t
f o l l o w i n g t h e S u c c e e d . W h e n a M a t c h i n g
Procedure is the first <element> of *an
associative context, Failing will exit the Foreach.

WARNING: Matching procedures are *
implemented as processes and two calls of the
same matching procedure may share the same
memory unless the procedure is declared
RECURSIVE. S e e M e m o r y A c c e s s i b l e t o a
Pracess, page 105.

If a Matching Procedure is explicitly SPROUTed
as a process then the Matching Procedure can

.be made running by a RESUME. In such a case
the item sent by RESUME is returned as the
value of the SUCCEED or FAIL statement which
suspended the Matching Procedure, just as
t h o u g h S U C C E E D o r F A I L w e r e a n i t e m
procedure . (In fact Sucdeed and Fai l a lways

I

re turn an i tem va lue , but the va lue is ANY
except in this special case.) Being Resumed is
the only was in which a Matching Procedure can
be reactivated after a FAIL.

When a Matching Procedure is used exterior to
the associative context of a Foreach, one may
use “BIND” in the call preceding those actuals
which one wishes bound regardless of their
current binding. Preceding the actual. with “?I’
w i l l h a v e t h e s a v e e f f e c t a s “ B I N D ” i f t h e
current value of the itemvar is BINDIT, and will
have no effect otherwise (the procedure will
not attempt to-find it a binding).

That is all there is to Matching Procedures,
Their power lies in the using them cleverly.

9 6

The following program il lustrates techniques
one may use wi th matching procedures by
simulating the List Membership and Retrieval
Triple <element% with matching procedures.

RECURSIVE MATCHING PROCEDURE INLIST
(? ITEMVAR X; LIST L);

BEGIN “INLIST”
COMMENT THIS PROCEDURE SIMULATES THE CONSTRUCT

X f L FOR ALL CASES EXCEPT THE SIMPLE
PREDICATE BINDITcL;

IF X + BINDIT THEN
BEGIN WHILE LENGTH (L) DO IF X = LOP (L)

THEN BEGIN SUCCEED; DONE END;
FAIL

END;
WHILE LENGTH (L) DD BEGIN XcLOP (I);

S U C C E E D END;
END “INLIST”;

MATCHING PROCEOURE TRIPLE (? ITEMVAR A, 0, V);
BEGIN “TRIPLE”

DEFINE BINDING (A)~“(A~BINDIT)“i
SET SETI; INTEGER INDX;
RECURSIVE PROCEDURE SUCC,SET (REFERENCE

ITEMVAR X; SET S I);
WHILE LENGTH ($1) DO BEGIN X*LOP (S1)i

SUCCEED END;

INDX c 0;
IF BINDING (A) THEN lNDX c 1 i
IF BINDING (0) THEN IND)! l INDX + 2;
IF BINDING (V) THEN INDX l INDX + 4;
CASE INDX OF
BEGIN [0] “A@O@V” IF A@OW THEN SUCCEED;

[I] “?@OmV” SUCC,SET (A, OiVh
[2] “Ao?@V” SUCC,SET (0, A’Vh
[3] “?@?@I’” BEGIN SET1 c ANY t V;

WHILE (LENGTH (SETI)) DO
BEGIN A c LOP (SETlh

SUCC,SET (0, A’V) END END;
[4) “AeO@?” SUCC,SET (V, AN);
[SJ “?@OE?” BEGIN SET I c 0 t ANY;

WHILE (LENGTH (SET 1)) DO
BEGIN A c LOP (SET I)i

SUCC,SET (V, A@01 EN0 END;
(61 “A@?r?” BEGIN SET 1 c A ’ ANY;

WHILE (LENGTH (SETI)) DO
BEGIN 0 t LOP (SET 1);

SUCC,SET (V, APO) END END;
[71 “?O?Z?”

JJSERERR(0, 1, “ANYoANYsANY IS IN BAD TASTE”)
END;

END “TRIPLE”;

14.1 S y n t a x

SAIL LEAP EXPRESSIONS

SECTION 14

LEAP EXPRESSIONS

Gap,expression>
::- <item-expression>
::- <set-expression>
::- <list-expression>

<item-expression>
::- <item-primary>
::- [<item-p rimary> 8 <item-primary> 0

<item-primary>]

<item-primary>
::- NEW
::- NEW (<algebraic-expression> >
::- NEW (<set-expression>)
::- NEW (<list-expression>)
::- N E W (<array-name>)

- ::- ANY
::- BINDIT
::- <item-identifier>
::- <itemvar,variable>
::- <list-expression> [

<algebraic-expression> J
::- citemvar procedure-call>
::- *resumeIconstruct>
::- <interrogate-construct>

<itemvargrocedure-call>
::- <procedure-call>

<list-expression>
::- <list-primary>
::- <list-expression> & <list-expression>

<list_primary>
::- MIC
::- <list-variable>
::- ((<itkm-expr,list> 1)
::- (<list-expression> >
::- <list-primary> [<substring,spec>] *
::- <setgrimary>

<item-expr-list>
::= <item-expression>
::- <item,exprJist> , <item-expression>

<set-expression>
::- <set-term>
::- <set-expression> u <set-term>

<set-term>
::- <set-factor>
::- <set-term> n <set-factor>

<set-factor>
::= <set-primary>
::- <set-factor> - <set-primary>

<set-primary>
::= PHI
::= <set-variable>
::= (item,expr-list)
::= (<set-expression> >
::= <derived-set>

<derived-set>
::- <item-expression>

<associative-operator>
<item-expression>

<associative-operator>
;:- @
::- t
::- i

<itemvar,variable>
::- <variable>

<set-variable>
::= <variable>

<list-variable>
::= <variable>

<leap,relational>
::- <item-expression> IN

<set-expression>
::- <item-expression> IN

<list-expression>

97

LEAP -EXPRESSIONS SAIL

::= <item-expression>
<item,relational,operator> .
<item-expression>

::- <set-expression>
<set-relational,operator>
<set-expression>

::= <list-expression>
<list-relational,operator>
<list-expression>

::= <triple>

<item-relational,operator>
::’ =
::z

#

<set,relational,operator>
“S 9. .
::c #
::= <
::= >
..- <..- -
::c 1

<list,relational,operator>
‘.Z =. .

_ ::= #

1 4 . 2 s e m a n t i c s

ITEM EXPRESSIONS
ltemvars and itemvar arrays may be used in
item expressions just as algebraic variables and
algebraic arrays are used in algebraic
expressions. ltemvars and itemvar arrays are
initialized to the special Sail item ANY.

Items may be retrieved from sets and lists with
the Sail functions COP and LOP. COP (<set
expression or list expression>) yields the item
which is the first element of the set or list that
the set or l ist expression evaluated to. LOP
also yields the first item of the set or list, but
removes that item from the set or list. Because
LOP changes the contents of the set or list that
is its argument, it can only accept set or list
variables, not expressions. See page 48.

L i s t e l e m e n t d e s i g n a t o r s m a y b e u s e d a s
itemvars in expressions. F o r e x a m p l e , i f
RECORD is a list, and ITMVR an itemvar,

RECORD[5] c ITMVR;
ITMVR c RECORD[co- 1);
RECORD[co] c RECORDI I];

are all legal. The special token “00” means the
length of the list when used in this context.
The contents of the square brackets. may be
any algebraic expression as long as it evaluates
to an integer n where 1 5 n I LENGTH (list).

<list-expression> [<algebraic-expression>]
returns a particular element of a list, but may
n o t a p p e a r o n t h e l e f t o f a n a s s i g n m e n t
expression, because assignment must be to
variables.

NEW
The- function NEW creates an item at execution
time. Since space must be allocated at loading
for var ious tables, one must indicate
approximate ly how may NEW i tems he wi l l
create (the compiler counts the declared items
for you). Therefore, one should say “REQUIRE n
NEW-ITEMS.” where n is some integer less than
4090 (the maximum number of items allowed in
Sail). n may be larger than the actual number
of New items created, but the excess will be
wasted space. If 0 < n < 50, you get tables for
50 New items anyway.

NEW may take an argument. In this case, the
datum of the created item is preloaded with the
value passed as argument. If this argument is
algebraic, set or list, then the datum will be of
the sarne type. No type conversions are done
when passing the algebraic argument. NEW will
also accept an array name as argument. In this
case, the created item will be of the type array.
In fact, the array cited as argument will be
copied into the newly created array. The new
array will have the same bounds and number of
dimensions as the array cited as argument.
This array will not disappear even if the block
that the original array was declared in is exited.
It will only be deallocated if the item is deleted.

NEW in an item expression makes that item
expression a “constructive item expression”.
Constructive item expressions are il legal in
some places, namely anywhere that attempts to
gets an item from an existing structure (i.e.,
ERASE, REMOVE, and Associative searches). It is
usually clear whether or not a constructive item
expression is illegal.

9 8

SAIL

A N Y
Some associat ive searches may need only
partial specification. The ANY item is used to
specify exactly which parts of the specification
are “don’t cares”%. Examples: .

I FOREACH X SUCH THAT Fether o X i ANY DO .
IF Father @ BIND X m ANY THEN . .

ANY, in an item expression makes that item
expression a “retrieval item expression”. This
i s t h e o p p o s i t e o f a c o n s t r u c t i v e i t e m
expression, a n d i s i l l e g a l a n y w h e r e t h e
statement is creating new structure, namely, a
M A K E s t a t e m e n t . Thus, ANY is legal
everywhere items are, e x c e p t a MAKE
statement.

BINDIT
Like ANY, BINDIT specifies no constraints on the
associative search. H o w e v e r , BINDIT h a s a
special meaning to some searches, namely the
Binding Boolean and Matching Procedures
(depending on h o w t h e y ’ r e w r i t t e n) . A n
itemvar containing BINDIT will be bound by the
search to an item of the
search found. For example:

association that the

X c BINDIT;
IF Fethor o ? X l Bob

THEN PUT X IN Bobfethersrt;

Like ANY, BINDIT is illegrl in MAKE statements.
. In cer ta in associat ive searches, namely the

ERASE statement, the Bracketed Triple Item
retrieval expression, and the Retrieval Triple
<element> of a Foreach, inclusion of BINDIT will
cause the search to always fail, because BINDIT
can appear in no association.

TYPES AGAIN
The compiler can determine the type of items
when the item expression is a typed itemvar, a
typed itemvar procedure, a declared item with
a type, a typed itemvar array, or a NEW with
an argument. When the compiler can determine
the type of the item expression, then and only
then is it legal to use the Datum construct on
the i tem express ion or to ass ign the i tem
expression to a Checked itemvar. For example,
the folIoWing are ILLEGAL:

1 DATUM (COP-(<s.t>))
DATUM (RECORD[a)); COMMENT RECORD ie e list;
CHEC + NEW; COMMENT CHEC is e Checked itemver;

LEAP EXPRESSIONS

SET AND LIST EXPRESSIONS
Three rather standard Operations are
implemented for use with sets. These are union
(u), intersection (n), and subtraction (0). These
operators have the s tandard mathemat ica l
interpretations. The only possible confusion
pertains to subtractions: if we perform the set
operation

ret1 - l ot2

and if there is an instance of an item x in set2
but not in setl, the subtraction proceeds and
no error message is given.

If one considers a list to be a string of items,
then concatenation and taking sublists suggest
themselves as likely list operations. The syntax
and semant its for sublisting and list
c o n c a t e n a t i o n a r e i d e n t i c a l w i t h t h o s e o f
str ings, wi th the natura l except ion that the
results are lists, and not strings. There is also
a difference in that if the indices to the
s u b s t r i n g e r d o n o t m a k e s e n s e , a n e r r o r
message is generated rather than setting of the
-SKIP, variable. Examples:

LISTVAR c LISTVAR[P TO a- I];
LISTVAR c LlSTVAR[9 FOR 2*N];
LISTVAR c LISTVAR[1 FOR 21 P LISTVAR(3 TO a~];

One may generate sets with

{itom 1, item5 itrm3)

and may generate lists with

{(item 1, item 1, item2, item3)).

Sets are initialized to the empty set, PHI. Lists
are initialized to the null list, NIL. Initialization
occurs at the beginning of the execution of the
program. Sets and l is t are re in i t ia l ized on
entering the blocks of their declaration only
when such blocks are in recursive procedures.

DERIVED SETS
Der ived sets are rea l ly sets of answers to
questions which search the associative memory.
The conventions are:

r@b -- the set of all x such that e Q b i x
rrb -- the rot of ell x l uch that x Q e = b
r’b -- the sot of rll x such that e 0 x f b

9 9

LEAP EXPRESSIONS d SAIL

BOOLEANS
Several boolean primaries are implemented for
comparing sets, lists, and items. In the following
discussion, “ix” means item expression, “se”
means set express ions , and “Ie” means l is t
expression. These are:

1) S e t a n d L i s t M e m b e r s h i p . T h e
boolean “ix IN se” evaluates the set
or list expression, and returns TRUE

if the i tem value speci f ied by the
item expression is a member of the
set or list.

a Association Existence. The binding
boolean “ix e ix a ix”, where the ix
are item expressions or itemvars
p r e c e d e d b y ? o r B I N D , r e t u r n s
TRUE if a binding of the BIND
i t e m v a r s (a n d ? i t e m v a r s that
contained BINDIT) can be found such
that the association exists in the
associative store. See page 91 for
more i n f o r m a t i o n o n binding
booleans.

3) Relations.

ix = ix
-ix + ix

sol < 8.2

l .1 s 8.2

*.I l 8.2
8.1 + so2
8.1 > a.2
sol z so2
lel = lo2
le1+lo2 I

obviou8 intorpretrtion
obvious intorprotrtion
true if rel k a proper
wbwt of ~2
true if a01 ia id&ml t o
802 or b a propr wbaot of $02
obvious intwprotrtion
obvious intorpretrtion
quivrknt to $02 * 801
l quiv8lont to $02 S ml
obviou* intorprotrtion
obviour intorpntrtion

PNAMES
For those desire them, each item may have a
string, called its PNAME, linked with it. This is
completely independent of the Datum construct.
New items and Bracketed Triple items are
created with NULL strings as their Pnames. One
m a y d e l e t e a n i t e m ’ s P n a m e w i t h t h e
DEL,PNAME funct ion which takes an i tem
expression as its argument. One may give a
Pnameless item a Pname with the NEW-PNAME
procedure, which takes an item expression and
a string as its arguments. CVSJ will give you
the Pname ‘of an item, and CVIS with give y o u
t h e i t e m w i t h t h e rpecifiod P n a m e . N o t w o
items may have the same Pnamei Pnames do

not follow Algol scope rules. See page 124 to
find out how to usa the above four functions.

If you would like your declared items to have
Pnames that are the same as the identifier used
in their declaration, say “REQUIRE PNAMES” or
“REQUIRE n PNAMES” before their declaration at
the beginning of the program. The n is an
estimate of the number of dynamically created
items with pnames y o u will use -- this causes
tables for n pnames to be allocated at compile
t i m e rathar t h a n runtime, t h u s m a k i n g y o u r
program more efficient.

PROPS
Any item may ‘have a PROPS. This is an extra
12 bits of storage (frequently used for bits).
PRQPS (X) where X is an i tem expression is
exactly an integer variable in its syntax. See
page 89 for further information on props.

100

SAIL- BACKTRACKING

SECTION 15

BACKTRACKING

War i>
::- <variable>
::= <array-identifier>

<context-variable>
::- <variable>

15.1 Introduction

BaEkup or backtracking is the ability to “back
e x e c u t i o n t o a p r e v i o u s p o i n t . Sail

fUaPtilitates b a c k t r a c k i n g b y a l l o w i n g o n e t o
REMEMBER, FORGET, or RESTORE variables in
the data type CONTEXT.

15.F Syntax

<context-declaration>
::- CONTEXT <id-list>
::- CONTEXT ARRAY <arrayJist>
::- CONTEXT ITEM <id-list>
::- CONTEXT ITEMVAR <id-list>

<backtracking-statement>
- ::- <rem-keyword> <variable-list>

<rem-preposition> Qontext,variable>

<rem-keyword>
::- REMEMBER
::- FORGET
::- RESTORE

<rem.preposition>
::- IN
::- FROM

<variableJisP
::- <variJist>
::- (<variJist>)
::- ALL
::- <context-variable>

<variJist>
::- <varP
::- <variJist> , everi>

<array-identifier>
::- 4dent if ier>

<context-element>
::- <context-variable> : <variable>

15.3 Semant its

THE CONTEXT DATA TYPE
A context is essent ia l ly a s torage p lace of
undefined capacity. W h e n w e R E M E M B E R a
variable in a context, we remember the name of

the variable along with its current value (if an
array, values). If we remember a value which
we have a l ready remembered in the named
c o n t e x t , w e d e s t r o y t h e o l d v a l u e w e h a d
remembered and replace it with the current
value of the variable. Values can be given back
to variables with the RESTORE statement.

C o n t e x t v a r i a b l e s a r e j u s t l i k e a n y o t h e r
var iab les wi th respect to scope. A l s o , a t
execution time, context variables are destroyed
when the block in which they were declared is
exited in order to reclaim their space. Context
arrays, items, and itemvars are legal (items and
i t e m v a r s a r e p a r t o f L e a p) . NEW(< c o n t e x t
variables) is legal (NEW is also part of Leap).

RESTRICTIONS:

1. Context procedures do not exist. Use
context itemvar procedures instead.

2. Context variables may only be passed
b y r e f e r e n c e t o p r o c e d u r e s (i . e . ,
contexts are not copied).

3. Contexts may not be declared “GLOBAL”
(shared between jobs - SUAI only).

4. +, *, /, a n d a l l o t h e r a r i t h m e t i c
o p e r a t o r s h a v e n o m e a n i n g w h e n

101

BACKTRACKING . SAIL

applied to Context variables. Therefore,
context variable ’ expressions always
consist only of a context variable.

WARNING!!! Restoring variables that have been
destroyed by block exits will give you garbage.
For example, the following will blow up:

The empty *context is NULL-CONTEXT. Context
variables are initialized to NULL-CONTEXT a t
program entry.

REMEMBER
To save the current values of variables, l ist
them, .wit h or without surrounding parentheses,
in the remember statement. All of an array will
be remembered if subscripts of an array are
not used, otherwise, only the value indicated
will be remembered. If a variable has already
b e e n r e m e m b e r e d i n c o n t e x t , i t s v a l u e i s
replaced, by the current value, If one wants to
update all the variables so far remembered in
this context, one may say

I REMEMBER ALL IN eontaxts.

If you have several contexts active,

BEGIN “BLOWS UP”
CONTEXT JI;
INTEGER J;
BEGIN INTEGER ARRAY L[1 :JJ;

REMEMBER J, L 1N Jli
END;
RESTORE ALL FROM Jl;

END “BLOWS UP7 ..

FORGET
The forget statement just deletes the variable
from the context without touching the current
variable’s value. Variables remembered in a
context should be forgotten before the block in
which the variables were declared is exited.
FORGET ALL FROM Xl and FORGET CNTXTl
FROM CNTXT2 work just as the similar Restore
s t a t e m e n t s w o r k , o n l y t h e v a r i a b l e s are
Forgotten instead of Restored.

REMEMBER CNTXT 1 IN CNTXT2 IN-CONTEXT

will note the variables Remembered in CNTXTl,
and automatically Remember their CURRENT
values in CNTXT2.

RESTORE
To restore the values of variables that were
saved in a context, list them (with or without
‘surrounding parentheses) in a restore
statement. Restoring an array without using
subscripts causes as much of the array that
was remembered to be restored magically to
the r ight locat ions in the array . You c a n
r e m e m b e r a w h o l e array, then restore all or
selected parts (e.g. RESTORE A[l, 23 FROM IX;).
If you remembered only A[l, 23, then restoring
A will only update A[l, 23. RESTORE ALL IN IX
will of course restore all the variables from IX.
RESTORE CNTXTl FROM CNTXT2 will act tike a
list of the variables in CNTXTl was presented
to the Restore instead of the identifier CNTXTl.

Astute Leap users wi l l have noted that the
s y n t a x f o r v a r i a b l e s i n c l u d e s Datum(typed
itemvar) and similar things. If one executes
REMEMBER DATUM (typed-item-expression-l)
IN CNTXT, then RESTORE DATUM
(<item,expression,2>) FROM CNTXT will give an
e r r o r message unless the
<typed,item,expression,2, returns the same
item as <typeditem,expression,l>.

The runtime boolean IN-CONTEXT returns true
i f the speci f ied var iable is in the speci f ied
context. For details, see page 51.

CONTEXT ELEMENTS
Context elements provide a convenient method
of accessing a variable that is being
remembered in a context. Examples of context
elements:

CNTXT,VARI : SOME,VARI
OATUM (CNTXTJTEM) : SOME,VARI
CNTXT,AR[2,3) : ARRY[4)
DATUM (CNTXT,VARI I ITMVR)
CNTXT,VARI : DATUM(ITMVR)

A c o n t e x t e l e m e n t i s s y n t a c t i c a l l y a n d
semantically equivalent to a variable of the
same type as the variable following the colon.
For the complete syntax of variables, see page
128. Assignments to context elements change
the Remembered value (i.e., X4-5; REMEMBER X
IN C; C:X+6; RESTORE X FROM C; will leave X
with the value 6).

As with the Restore statement, one may not use
Context Elements of variables destroyed by
block exits.

RESTRICTIONS: (1) One may not Remember
Context Elements. (2) Passing Context Elements

102

SAL BACKTRACKING

b y r e f e r e n c e t o p r o c e d u r e s t h a t c h a n g e
contexts is dangerous . Namely, if the
procedure Forgets the element that was passed
to it by reference, then the user is left with a
dangling pointer. A more subtle variation of
this disaster occurs when the Context element
passed is an array element. If the procedure
Remember6 the array that that array element
w a s a part of, the formal that had the array
e l e m e n t C o n t e x t E l e m e n t pa66ed to it is ieft
with. a dangling pointer.

1 0 3

PROCfSSES . SAIL

SECTION 16

PROCESSES

16.1 Introduction

A PRqCESS is a procedure call that may be run
independently of the main program. Several
processes may “run” concurrent ly . When
dealing with a multi-process system, it is not
quite correct to speak of “the main program”.
The main program ir actually a process itself,
the main process.

This section will deal with the creation, control,
and destruction of processes, as well as define
t h e m e m o r y a c c e s s i b l e t o a p r o c e s s . T h e
following section will describe communication
bet ween processes.

16.2 Syntax

<process-statement>
::- <sprout-statement>

<sprout-statement>
::- SPROUT (<item-expression> ,

<procedure-call> ,
<algebraiC,eXpre66iOn>)

::- SPROUT (<item-expression> ,
<procedure-call>)

I
::- SPROUT (<item-expression> ,

<apply-construct>)

I <sprout-default-declaration>
::- SPROUT-DEFAULTS <integer-constant>

16.3 Semant its

STATUS OF A PROCESS
A process can be in one of four states:
terminated, suspended, ready, or running. A
terminated process can never be-run again. A
suspended process can be run again, but it
must be explicitly told to run by 6ome process

1 0 4

that is running. S i n c e S a i l i s c u r r e n t l y
implemented on a single processor machine, one
cannot really execute two procedures
simultaneously. Sail uses a scheduler to swap
processes f rom ready to running s ta tus . A
running process is actually executing, while a
ready process is one which may be picked by
the scheduler to become the running process.
The user may retrieve the status of a process
with the execution time routine PSTATUS, page
109.

SPROUTING A PROCESS
O n e c r e a t e s a p r o c e s s w i t h t h e S P R O U T
btatement:

SPROUT (*item>, <procedurr cdl,,
SPROUT (*item*, <procedure cdl*)

options)

<item> is a construction item expression (i.e. do
not use ANY or BINDIT). Such an item will be
called a process item. The item may be of any
type; however, its current datum will be writen
over by the SPROUT statement, and its type will
be changed to “process item” (see TYPEIT, page
123). RESTRICTION: A user must never modify
the datum of a process item.

<procedure call> is any procedure call on a
regular or recurs ive procedure , but not a
simple procedure. This procedure will be called
the process procedure for the new process.

<options> is an integer that may be used to
speci fy specia l opt ions to the SPROUTer. If
< o p t i o n s > i s l e f t o u t , 0 w i l l b e u s e d . T h e
different fields of the word are as follows:

B I T S N A M E DESCRIPTION

14-17 QUANTUM (X) Q + IF X-O THEN 4 ELSE
27X; T h e p r o c e s s w i l l b e
given a quantum of Q clock
ticks, indicating that if the
u s e r i s u s i n g C L K M O D t o
handle clock interrupts, the
process should be run for at
most Q c lock t icks, before
cal l ing the scheduler . (see
about CLKMOD, page 120 for
details on making processes
“time share”).

.

18-21 STRINGSTACK (X) S + IF X=0 THEN 16
ELSE X*32; The process will

SAIL- - PROCESSES

be given S words of string
stack.

2 2 - 2 7 P S T A C K (X) P+lF X=0 T H E N 3 2 E L S E
X*32; The process will be
given P words of arithmetic
stack.

corresponding field of the specified
<integer-constant> of the SPROUT-DEFAULTS
for the procedure being sprouted. If the field
is non-zero t h e n t h a t v a l u e w i l l b e u s e d ;
otherwise the current “system” default will be
used.

2 8 - 3 1 PRIORITY (X) P + IF X-O THEN 7 ELSE
X; The process will be given
a priority of P. 0 is the
highest priority, and
reserved for the Sail system.
15 is the lowest pr ior i ty .
Priorities determine which
ready process the scheduler
will next pick t o m a k e
running.

NOTE: SPROUT-DEFAULTS only appl ies to
“allocations”, i.e., the process status control bit6
(e.g. SUSPME) a re not affected. Example:

RECURSIVE PROCEDURE FOO;
BEGIN
SPROUT-DEFAULTS STRINGSTACK (10);
INTEGER Xxx;

END;

3 2 SUSPHIM I f s e t , s u s p e n d t h e n e w l y SPROUT (PI, FOO, STRINGSTACK (3));
sprouted process. SPROUT (P2, FOO);

3 3

3 4

Not used at present.

SUSPME If set, suspend the process
in which this sprout
statement occurs.

COMMENT Pl will have a string stack of 3*32 words.
P2 will hrvo a string stack of IO*32 words;

3 5 RUNME If set, continue to run the
process in which this sprout
statement occurs.

The names are d e f i n e d i n the file
. cSUAIPSYS:PROCES.DEF, which one may require

as a source file. Opt ions words may be
assembled by simple addition, e.g. RUNME +
PRIORITY (3) + PSTACK (2).

DEFAULT STATUS: If none of bits 32, 34, or 35
are set, then the process in which the sprout
statement occurs will revert to ready status,
and the newly sprouted process will become
the running process.

MEMORY ACCESSl8LE TO A PROCESS
A p r o c e s s h a s a c c e s s t o t h e s a m e g l o b a l
v a r i a b l e s a s w o u l d a “ n o r m a l ” c a l l o f t h e
process procedure at the point of the SPROUT
statement. For example, suppose you Sprouted
a process in the first instantiation of a
recursive procedure and immediately suspended
it. T h e n i n a n o t h e r i n s t a n t i a t i o n o f t h e
procedure, you resumed the process. Since
each recursive instantiation of a procedure
creates and initializes new instances of its local
variables, the process uses the instances of the
recursive procedure’s locals that were current
at the time of the SPROUT, namely those of the
first instantiation.

The default values of QUANTUM, STRINGSTACK,
PST&K, and PRIORITY are stored in the system
variables DEFQNT, DEFSSS, DEFPSS, and DEFPRI
respectively. These values may be changed.
The variables are declared EXTERNAL INTEGERS

in c SUAIPSY S:PROCES.DEF.

SPROUT-DEFAULTS
! 14 one of the “a!!ocation” f ie lds of the opt ions

I

word passed to the SPROUT rout ine - - i .e . ,
QUANTUM, STRINGSTACK, PSTACK, or PRIORITY
- - i s z e r o , then SPROUT wi l l look at the

Sail will give you an error message whenever
the global variables of a process are
deallocated but the process still exists. Usually,
this means that when the block in which the
process procedure was declared is exited, the
corresponding process must be terminated (one
c a n i n s u r e t h i s b y u s i n g a s m a l l C l e a n u p
p r o c e d u r e t h a t w i l l T E R M I N A T E t h e f a t e d
process or JOIN it to the current one -- see
about Cleanup, page 10, Terminate, page 107,
and Join, page 1 0 9) . W h e n t h e p r o c e s s
procedure has been declared inside a recursive
procedure, things become a bit more complex.
As ment ioned above, the process takes i ts

PROCESSES

globals f r o m t h e c o n t e x t o f t h e S p r o u t
statement. Therefore, it is only in the
instantiation of the recursive procedure that
executed the Sprout that trouble can occur.
For example,

RECMSIVE PROCEDURE TENLEVEL (INTEGER I);
E?iClN “TROUBLE”

PROCEDURE FOO,
, COMMENT does nothmg;

lb i-b THElr(SPROUT (NEW, FOO, SUSPHIM),

COMMENT sprouts FOO on the 5th

rnstantlrtlon of TENLEVEL, than

Immealrtely suspends it;

ii’ 1% ,ci irittll TENLEVEL (i+ I);

RETURN,

COMMENT assuming TENLEVEL is crllod
with l-0, it will do IO instrntirtionr,

then coma oak up;

END “TROUBLE”;

TENLEVEL w i l l n e s t 1 0 d e e p , t h e n s t a r t
returning. This means “TROUBLE” will be exited
five times will no ill effects. However, when
San attempts to exit “TROUBLE” a sixth time, it
will be exiting a block in which a process was
sprouted and declared. I t wi l l generate the
,error message, “Unterminated process
dependent on block exited”.

7 he construct DEPENDENTS (<block-name>),
w h e r e < b l o c k - n a m e > i s a s t r i n g c o n s t a n t ,
produces a set of process items. The process
i tems are those of a l l the processes which
depend on the current instance of the named
b l o c k - - i . e . all processes whose process
procedures obtain their global variables from
that b l o c k (via the p o s i t i o n o f t h e p r o c e s s
procedure’s declaration, or occasionaly via the
location of the Sprout in a nest of recursive
procedure instantiations). This construct may
be used together with a CLEANUP procedure
(s e e p a g e 10) to avoid hav ing a b lock ex i t
before- all procedures dependent on it have
been termjnated.

I f o n e S p r o u t s t h e s a m e n o n - r e c u r s i v e
p r o c e d u r e m o r e t h a n o n c e (w i t h d i f f e r e n t
process ,tems, of course), the local variables of
the proicdure are not copied. In other words,

106

SAIL

"X+5" in process A w i l l s t o r e 5 i n t h e s a m e
location that “X40” in process B would store
10. If such sharing of memory is undesirable,
declare the process procedure RECURSIVE, and
then new instances of the local variables of the
procedure will be created with each Sprout
involving that procedure. Then “X” in process
A will refer to a different memory location than
“X” in process B.

SPROUT APPLY
The <procedure call> in a SPROUT statement
may be an APPLY construct. In this case
SPROUT will do the “right” thing about setting
up the static link for the APPLY. That is, “up-
level” references by the process will be made
to the same variable instances that would be
used if the APPLY did not occur in a SPROUT
statement. (See page 115.)

H o w e v e r , t h e r e i s a g l i t c h . T h e s p r o u t
mechanism is not yet smart enough to find out
the block of the declaration of the procedure
used to define the procedure item. It would be
nice if it did, since then it could warn the user
when that block was exited and yet the process
was still alive, and thus potentially able to refer
to deallocated arrays, etc. What the sprout
does instead is assume the procedure was
declared in the outer block. This may be fixed
eventually, but in the meantime some extra care
should be taken when using apply in sprouts to
avoid e x i t i n g a b l o c k w i t h d e p e n d e n t s .
Similarly, be warned that the
“DEPENDENTS (<blockid>)” construct may not
give the “right” result for sprout applies.

SPROUTING MATCHING PROCEDURES
When a matching procedure is the object of a
Sprout statement, t h e F A I L a n d S U C C E E D
statements are interpreted d i f ferent ly than
they would be were the matching procedure
called in a Foreach or as a regular procedure.
FAIL is equivalent
RESUME (CALLER (MYPROC), CVI IO)). SUCCE:;
is equivalent to RESUME (CALLER (MYPHOC),
CVI (-1)).

SCHEDULING
One may change the s ta tus of a process
between terminated, suspended and
ready/running with the TERMINATE, SUSPEND,
RESUME, and JOIN constructs discussed above,
and the CAUSE and INTERROGATE constructs
discussed in the next chapter. This section will

SAIL - PROCESSES

describe how the the status of processes may
change between ready and running.

W h e n e v e r t h e c u r r e n t l y r u n n i n g p r o c e s s
performs some action that causes its status to
change (to ready, terminated, or suspended)
without specifying which process is to be run
next, the Sail process scheduler will be invoked.
It chooses a process from the pool of ready
processes. The process it chooses will be made
the next running process. The schedul ing
algor i thm is essent ia l ly round robin wi th in
priority class. In other words, the scheduler
finds the highest priority class that has at least
one ready process in it. Each class has a list of
processes associated with it, and the scheduler
chases the first ready process on the list. This
process’ then becomes the running process and
is put on the end of the list. if no processes
have ready status, the scheduler looks to see if
the program is enabled for any interrupts (see
interrupts , page 117) . i f t h e p r o g r a m i s
enabled for some kind of interrupt that might
s t i l l h a p p e n (n o t a r i t h m e t i c o v e r f l o w , f o r
instance), then the scheduler puts the program
i n i n t e r r u p t w a i t . A f t e r t h e i n t e r r u p t i s
dismissed, the scheduler tries again to find a 1
ready process. if no interrupts that may’still
happen are enabled, and there are no ready
processes, the error messago “No one to run” i,s
issued.

The rescheduling operation may be explicitly
invoked by calling the runtime routine URSCHD,
which has no parameters.

POLLING POINTS
Polling points are located at “clean” or “safe”
points in the program; points where a process
may change from running to ready and back
w i t h n o b a d e f f e c t s . Polling points cause
conditional rescheduling. A polling point is an
efficient version of the statement:

IF INTRPT A -NOPOLL THEN
I BEGIN INTRPTcO; URSCHD END;

INTRPT is an external integer that is used to
request rescheduling at the next polling point.
it is commonly set by the deferred interrupt
r o u t i n e -0FRiNT (f o r a i l a b o u t d e f e r r e d
i n t e r r u p t s , see page 121) and by the c lock
interrupt rout ine CLKMDD Xfor h o w t o ‘ m a k e
processes time share, see page i20)., The user
may u s e I N T R P T f o r h i s o w n p u r p o s e s
(carefully, S O as not to interfere with DFRINT or

CLKMOD) b y including the declaration
“EXTERNAL INTEGER INTRPT”, then assigning
INTRPT a non-zero value any time he desires
the next polling point to cause rescheduling.
NOPOLL i s a n o t h e r e x t e r n a l i n t e g e r t h a t i s
provided to give the user a means of
dynamically inhibiting polling points. For
example, suppose one is time sharing using
CLKMOD. in one of the processes, a point is
reached where it becomes important that the
processes not be swapped out until a certain
tight loop is finished up. By assigning NOPOLL
(which was declared an EXTERNAL INTEGER) a
non-zero value, the polling points in the loop
are ef f ic ient ly ignored. Z e r o i n g NOPOLL
restores normal time sharing.

A single polling point can be inserted with the
statement POLL. The construct

REQUIRE n POLLING-INTERVAL

where n is a positive integer, causes polling
points to be inserted at safe points in the code,
namely: a t t h e s t a r t o f e v e r y s t a t e m e n t
provided that at least n instructions have been
emitted since the last polling point, after every
label, and at the end of every loop. If n s 0
then no further polling points will be put out
until another Require n (n>O) PoilingJntervai is
seen.

16.4 Process &dimes

TERMINATE

TERMINATE (PROCJTM)

The process for which PRCCJTM is the process
item is terminated. it is legal to terminate a
terminated process. A terminated process is
t ru ly dead. The i tem may be used over for
anything you want, but after you have used it
for something else, you may not do a terminate
on i t . Terminat ion of a process causes a i l
blocks of the process to be exited.

107

PROCESSES SAIL

SUSPEND

ITM t SUSPEND (PROCJTM)

The process for which PROCJTM is the process
i t e m i s s u s p e n d e d . i f t h e p r o c e s s b e i n g
suspended is not the currently running process
then the item returned is ANY. in cases such as

X c SUSPEND WPROCh

where the process suspends itself, it might
happen that this process is made running by a
RESUME from another process. If so, then X
receives the SENDJTM that was an argument
to the RESUME.

O n e m a y s u s p e n d a s u s p e n d e d p r o c e s s .
Suspending a terminated process will cause an
er for message. if the process being suspended
i s t h e c u r r e n t l y r u n n i n g p r o c e s s (i . e . t h e
process suspends itself), then the scheduler will
be called to find another process to run. A
process may also be suspended as the result of
RESUME or JOIN.

RESUME

RET,ITM + RESUME (PROC,ITM,
SENDJTM, OPTIONS(O))

‘RESUME provides a means for one process to
restore a suspended process to ready/running
status while at the same time communicating an
i tem to the awakened process . It may also
specify what its own status should be. It may
be used anywhere that an itemvar procedure is
syntactically correct. When a process which
has suspended itself by means of a RESUME is
subsequently awakened by another resume, the
SENDJTM of the awakening RESUME is used as
the RET,ITM of the RESUME that caused the
suspension. For example, suppose that process
A hassuspended itself:

STARTINFO c RESUME (2, NEED-TOOL);

if later a process B executes the statement

INFOFLAG c-RESUME (A, HAMMER);

then B will suspend itself and A wiii become the
running process. A’s process information will
be updated to remember that it was awakened

108

by B (so than the runtime routine CALLER can
work) . F inal ly , A’s RESUME wi l l return the
value HAMMER, which wi l l be assigned to
S T A R T I N F O . I f A h a d b e e n s u s p e n d e d b y
SUSPEND or JOIN then the SENDJTM of B’s
RESUME is ignored.

A process that has been suspended in any
manner will run from the point of suspension
onward when it is resumed.

OPTIONS is an integer used to change the effect
o f t h e R E S U M E o n t h e c u r r e n t p r o c e s s
(MYPROC) and the newly resumed process.

B I T S N A M E DESCRIPTION

33~32 READYME i f 3 3 - 3 2 i s 1 , t h e n t h e
current process will not be
s u s p e n d e d , b u t b e m a d e
ready.

KILLME If 33-32 is 2, then the
current process w i l l b e
terminated. .

IRUN If 33-32 is 3, then the
current process will not be
s u s p e n d e d , b u t b e m a d e
running. The newly
r e s u m e d p r o c e s s w i l l b e
made ready.

34

35

This should always be zero.

NOTNOW I f s e t , t h i s b i t m a k e s t h e
newly resumed process
ready instead of running. If
33-32 are not 3, then this
bit causes a rescheduling.

DEFAULT: If none of bits 35 to 32 are set, then
the current process will be suspended and the
newly resumed process will be made running.
At SUAI include a REQUIRE “SYS:PROCES.DEF”
SOURCE-FILE in your program to get the above
bit names defined. O p t i o n s m a y t h e n b e
s p e c i f i e d b y s i m p l e a d d i t i o n , e.g. KILLME +
NOTNOW.

CALLER

PROCITEM + CALLER (PROCiTEM2)

SAIL - PROCESSES

CALLER returns the process item of the process
t h a t m o s t r e c e n t l y r e s u m e d t h e p r o c e s s
referred to PROCITEM2. PROCiTEM2 must be
the process item of an unterminated process,
otherwise an error message will be issued. If
PROCiTEM2’s process has never been called,
then the process i tem of the process’ that
sprouted PROCiTEM2 is returned. I

DDFINT

DDFINT

A pol l ing point is SKIPE I N T R P T ; P U S H J P ,
DDFINT.’ DDFINT suspends the current process
(but leaves i t ready to run) , then cal ls the
scheduler; DDFIM is like SUSPEND (MYPROC,
IRUN+NOTNOW).

JOIN

JOIN (SET-OF-PROCESS-ITEMS)

The current process (the one with the JOIN
statement in it) is suspended until ail of the
p’iocesses in the set are terminated. WARNING:
Be very careful; you can get into infinite wait
situations.

1. Do not join to the current process;
since the current process is now
suspended, it will never terminate of
its own accord.

2. Do not suspend any of the joined
processes unless you are assured
they will be resumed.

3. Do nbt do an interrogate-wait in any
of the processes unless you are
sure that the event it is waiting for
will be caused (page 110).

MYPROC

PROCITEM + MYPROC

M Y P R O C r e t u r n s t h e p r o c e s s - i t e m o f t h e
process that it is executed in. If it is executed
not inside a process, then MAINPI (the item for
the main process) is returned.

PRISET

PRISET (PROCITM, PRIORITY)

P R I S E T s e t s t h e p r i o r i t y o f t h e p r o c e s s
specified by PROCITM (an item expression that
must eva luate to the process item. of a non-
terminated process) to the priority specified by
the integer expression PRIORITY. Meaningful
p r i o r i t i e s a r e t h e i n t e g e r b e t w e e n 1 , t h e
highest pr ior i ty , to 15 , the lowest pr ior i ty .
Whenever a reschedul ing is ca l led for , the
scheduler finds the highest priority class that
has at least one ready process in it, and makes
t h e f i r s t p r o c e s s o n t h a t l i s t t h e r u n n i n g
process. See about the scheduler, page 107.

PSTATUS

STATUS + PSTATUS (PROCITM)

PSTATUS returns an integer indicat ing the
status of’ the process specified by the item
expression PROCITM

-1 running
0 l urpondad

1 rrrdy
2 trrminatrd

URSCHD

URSCHD

URSCHD is essentially the Sail Scheduler. When
one cal ls URSCHD, the scheduler f inds the
highest priority class that has at least one
Ready process in it. Each class has a list of
processes associated with it, and the scheduler
chases the first ready process on the list. This
process then becomes the running process and
is put on the end of the list. If no processes
have ready status, the scheduler looks to see if
the program is enabled for any interrupts. If
t h e p r o g r a m i s e n a b l e d f o r s o m e k i n d o f
interrupt that may still happen (not arithmetic
overflow, for instance), then the scheduler puts
t h e p r o g r a m i n t o i n t e r r u p t w a i t . A f t e r t h e
interrupt is dismissed, the scheduler tries again
to find a ready process. if no interrupts that
may still happen are enabled, and there are no
ready processes, the error message “No one to
run” is issued.

109

EVENTS SAIL

SECTION 17

EVENTS

17.1 S y n t a x

<event-statement>
::= <cause-statement>
::- <interrupt-statement> .

<cause-s,tatement>
::- CAUSE (<item-expression> ,

<item-expression> ,
<algebraic-expression>)

::- CAUSE (<item-expression> ,
<item-expression>)

<interrogate-construct>
::- INTERROGATE (<item-expression> ,

<algebraic-expression>)
::= INTERROGATE (<item-expression>)
::- INTERROGATE (<list-expression> ,

<algebraic-expression>)
::- INTERROGATE (<list-expression>)

17.2 Introduction

The Sail event mechanism is really a general
message processing system which provides a
means by which an occurrence in one process
can in f luence the f low of contro l in o ther
processes. The mechanism allows the user to
classify the messages, or “event notices”, into
distinct types (“event types”) and specify how
each type is to be handled.

Any teap item may be used as an event notice.
An event type is an item which has been given
a s p e c i a l runtime d a t a t y p e a n d d a t u m b y
means of the runtime routine:

MKEVT’T (et)

where et is any item expression (except ANY or
BINDIT). W i t h e a c h s u c h e v e n t t y p e S a i l
associates:

1. a “notice queue” o f i t e m s w h i c h
have been “caused” for this event
type.

2. a “wait queue” of processes which
are wai t ing for an. event of th is
type.

3. procedures for manipulat ing the
queues.

The principle actions associated with the event
s y s t e m a r e t h e C A U S E s t a t e m e n t a n d t h e
INTERROGATE construct. O r d i n a r i l y t h e s e
statements cause standard Sail runtime routines
t o b e i n v o k e d . H o w e v e r , t h e u s e r m a y
substitute his own procedures for any event
type (see User Defined Cause and Interrogate
procedures , page 112) . T h e C a u s e a n d
interrogate statements are here described in
terms of the Sail system supplied procedures.

17.3 Sail-defined Cause and Interrogate

THE CAUSE STATEMENT

CAUSE
CAUSE

kovent
(<wont

*wont
*wont

notim>, *options*)
notices)

<event type> is an item expression, which must
yield an event type item. <event notice> is an
item expression, and can yield any legal item.
<options> is an integer expression. If <options>
is left out, 0 is used.

The Cause statement causes the wait queue of
<event type> to be examined. If it is non-
empty, then the system will give the <event
notice> t o t h e f i r s t p r o c e s s w a i t i n g o n t h e
queue (see about the WAIT bit in Interrogate,
below). Otherwise, < e v e n t n o t i c e > w i l l b e
p laced a t the end of the not ice queue for
<event type>.

The effect of Cause may be modified by the
appropriate bits being set in the options word:

110

SAIL -

B I T S N A M E DESCRIPTION

3 5 DONTSAVE Never put the *vent item>
o n t h e n o t i c e q u e u e . I f
there is no process on the
wait queue, this makes the
cause statement a no-op.

3 4

I

TELLALL Set the status of all
processes waiting for this
event to READY.

3 3 RESCHEDULE Reschedule as soon as
possible (i.e., immediately
after the cause procedure
has completed executed).

DEFAULT: If bits 35 to 33 are 0, then the either
a single process is awakened from the wait
queue, or the event is placed on the notice
queue. The process doing the Cause continues
t o r u n . A t S U A I , REOUIRE “SYS:PROCES.DEF”
S O U R C E - F I L E to get the above b i t names
defined. Options can then be constructed with
simple addition, e.g. DONTSAVE + TELLALL.

THE INTERROGATE CONSTRUCT - SIMPLE FORM

-4tmmvars l INTERROGATE (<wont typo>, <opti&s)
<itomvor> c INTERROGATE (<wont typo>)

<event type> is an item expression, which must
. y ie ld an e v e n t t y p e i t e m . < o p t i o n s > i s a n

integer expression. If *ptions> is left out, 0 is
used.

The notice queue of <event type> is examined.
If it is non-empty, then the first element is
r e m o v e d end returned as the va lue of the
Interrogate. Otherwise, the special item Blr\lDlT
is returned.

<options> modifies the effect of the interrogab
statement 8s follows:

B I T S I N A M E

35 * RETAIN

DESCRIPTION

Leave the event notice on
the notice queue, but still
return the notice as the
value of the interrogate. If
the process goes into a
wait sta te 8s- a result of
t h i s i n t e r r o g a t e , a n d i s
subsequently awakened by
8 c8use, then the

EVENTS

34 WAIT

33 RESCHEDULE Reschedule as soon as
possible (i.e., immediately
after execution of the
interrogate procedure).

32 SAY-WHICH Creates the association
E V E N T - T Y P E 9 <event
n o t i c e > i <event t y p e >
w h e r e <event type> is the
type of the event returned.
Useful with the set form of
the In ter rogate construct ,
below.

D E F A U L T : I f b i t s 3 5 t o 3 2 a r e 0 , t h e n t h e
interrogate removes an event from the event
queue, and returns it. I f the event queue is
e m p t y , BINDIT is returned and no wai t ing is
done; the process continues to run. At SUAI,
use a REQUIRE “SYS:PROCES.DEF” SOURCE-FILE
to get the names defined; use simple addition to
form options, e.g. RETAIN + WAIT.

THE INTERROGATE CONSTRUCT - SET FORM

4trmvrr> c INTERROGATE (<wont typo rots)
drmvrr> c INTERROGATE (<wont typa ads, <optionr>)

<event type set> is a set of event type items.
<options> is an integer expression. If it is left
out, 0 will be used.

The set form of interrogate allows the user to
examine a whole set of possible event types.
This form of interrogate will f irst look at the
notice queues, in turn, of each event type in
<event type set>. If one of these notice queues
is non-empty , then the f i rs t not ice in that
queue will be remved and that notice will be
returned as the value of the Interrogate. If all
the notice queues are empty, and WAITing is
not specified in the options word, then BINDIT
will be returned. When the WAIT bit is set, the
process doing the interrogate gets put at the

111

DONTSAVE bit in the Cause
statement will override the
RETAIN bit in the
Interrogate if both are on.

If the notice queue is
empty , then suspend the
process executing the
i n t e r r o g a t e a n d p u t its
process i tem on the wai t
queue.

EVENTS SAIL

end of the wait queues of each event type in
<event type set,. Then, when a notice is finally
available, the process is removed from all of
the wait queues before returning the notice.
Note that the option SAY-WHICH provides a
means for determining w h i c h e v e n t t y p e
produced the returned notice.

17.4 User-defined Cause and Interrogate

By executing the appropriate runtime routine,
the user can specify that some non-standard
a c t i o n i s t o b e a s s o c i a t e d w i t h C A U S E o r
INTERROGATE for a particular event type. Such
user specified cause or interrogate procedures
may then manipulate the event data structure
directly o r b y t h e m s e l v e s i n v o k i n g t h e
primitives used by the Sail Cause and
Interrogate constructs. User defined Cause and
Interrogate are not for novice programmers
(this is an understatement).

EVENT TYPE DATA STRUCTURE
The datum of an event type item points to a six
word block of memory, This block contains the
following information:

WORD NAME TYPE DESCRIPTION

0 NOTCQ L I S T T h e l i s t o f a l l n o t i c e s
pending for this event
type.

1 WAITQ LIST The list of all processes
currently waiting for a
notice of this type.

2 BBS W-B Procedure specifier for
the user specified cause
procedure (zero if
system procedure is to
be used).

3 I - - - - - - Procedure specifier for
the user specified
interrogate procedure
(zero if system
procedure is to be used).

4 USER1 INTEGER Reserved for user.

5 USER2 INTEGER Reserved for user.

The appropriate macro definitions for these

names (e.g. WAITQ (e t) = “MEMORY[
D A T U M (et)+& LIST 1”) are included in the file
cSUAIpSYS:PROCES.DEF.

USER CAUSE PROCEDURES
A procedure to be used as a Cause procedure
m u s t h a v e t h r e e f o r m a l v a l u e p a r a m e t e r s
corresponding to the event type, event notice,
and options of the Cause. Such a procedure is
associated with an event type by means of the
runtime SETCP:

. .

SETCP (avant type>, <procedure specifiers);

where <event type> must yield an event type
i tem and <procedure speci f ier> is e i ther a
procedure name or DATUM (<procedure item>).
For- example:

PROCEDURE CX (ITEMVAR ET, EN; INTEGER OPT);
BEGIN
PRINT (“Causing “, EN,
” as an event of type *, ET);
CAUSE1 (ET, EN, OPT);
E N D ;

SETCP (FOO, CX);

Now,
CAUSE (FOO, BAZ);

would cause CX (FOO, BAZ) to be called. This
procedure would print out “Causing BAZ as an
event of type FOO” and then call CAUSEl. The
runtime CAUSE1 (ITEMVAR etype, enot; INTEGER
opt) is the Sail runtime routine that does all the
actual work of causing a particular notice, enot,
as an instance of event type e type . It is
essentially this procedure which is replaced by
a user specified cause procedure.

CAUSE1 uses an important subroutine which is
also available to the user. The integer runtime
ANSWER (ITEM/AR ev&w, e v , n o t ,

. process-item) is used to wake up a process
that has suspended itself with an interrogate.
I f t h e p r o c e s s n a m e d b y p r o c e s s - i t e m i s
suspended, it will be set to ready status and
be removed from any wait queues it may be on.
ANSWER will return as its value the options bits
from the interrogate that caused the process to
suspend itself. If the named process was not
suspended, then ANSWER returns an integer
word with bit 18 (the ‘400000 bit in the right
h a l f - NOJOY in cSUAI3SYS:PROCES.DEF) set to

112

.
SAIL

1. The ev,type and ev,not must be included in
case’ the SAY-WHICH bit was on in the
interrogate which caused the suspension .
ANSWER has no effect on the notice queue of
e v , t y p e .

F r e q u e n t l y o n e m a y w i s h to u s 8 a c a u s e
p r o c e d u r e t o r8-direct some nOtiC8S t0 O t h e r
event types. For instance:

PROCEDURE CXX (ITEMVAR iT, EN; INTEGER OPT);
BEGIN KEMVAR OTH; LABEL C;
IF rodirocttort(ET, EN) THEN

FOREACH OTH 1 OTHER,CAUSE@ET.OTH 00
c: CAUSE1 (ET, EN, OPT)

ELSE CAUSE1 (ET, EN, OPT);
END;

I n o r d e r t o a v o i d s o m e i n t e r e s t i n g r a c e
conditions, the implementation will not execute
t h e c a u s e s a t C immediately. R a t h e r , i t w i l l
save ET, EN and OPT, then, when the procedure
CXX is finally exited, any such deferred causes
will be executed in the order in which they

/ were requested.

USER iNTERROGATE PROCEDURES
A user specified interrogate procedure must
have two value formal parameters
corresponding to the two arguments to
INTERROGATE and should return an item as the
value. The statement

SETIP (<went typo,, <procoduro spocifior>);

where <event type> is an event type item, and
<procedure spec i f ie r> iS either a procedure
name or DATUM (<procedure item>), will make
t h e s p e c i f i e d procedure b e c o m e the n e w
i n t e r r o g a t e procedure f o r <event type% F o r
inst ante:

ITEMVAR PROCEDURE lX (ITEMVAR ET; INTEGER OPT);
BEGIN ITEMVAR NOTI;
NOTI c ASKNTC (ET, bPT);
P R I N T (“Notico “, NOTl, ” roturnod

from intorroeation of “, ET);
I RETURN (NOTI);

I END;

SETIP (FOO, IX);

EVENTS

w o u l d c a u s e NOTI to be set to the value of
A S K N T C (FCC, 0). Then the message “Not ice
BAZ returned from interrogate of FOO” would
be pr in ted and IX would re turn NOTI as its
V8lUS.

The runtime ASKNTC (ITEM/AR etype; INTEGER
opt) is the Sail system routine for handling the
i n t e r r o g a t i o n of a single event bwe.
Essentially it is the procedure being replaced
by the user interrogate procedure.

ln the case Of multiple interrogations, Sail sets a
special bit (bit 19 - ‘200000 in the right half -
MULTIN i n cSUAIPSYS:PROCES.DEF) i n t h e
o p t i o n s w o r d b e f o r e d o i n g any of the
inttrrOgat8S Specified by the event type i tems
in the event type set. The effect of this bit,
which wi l l a lso be set in the opt ions word
passed to a user interrogate procedure, is to
cause ASKNTC always to return BINDIT instead
of ever wai t ing for an event not ice . Then, i f
ASKNTC returns BINDIT for all event types, Sail
will cause the interrogating process to Wait
unt i l its r8qU8St iS satisfied. lf multin is not set ,
then ASKNTC will do the WAIT if it is told to.

Now,
“. c INTERkATE (FOO);

113

PROCEDURE. VARIABLES SAIL

SECTION 18

PROCEDURE VARIABLES

18.1 S y n t a x

<assign-statement>
::- ASSIGN (<item,expr> ,

<procedure-name>)
::= ASSIGN (<item,expr> ,

DATUM (<item,expr>))

<ref,item,construct>
::- REF,ITEM (<expression>)

I ::= REF,ITEM (VALUE <expression>)
::- REF-ITEM (BIND <itemvar>)
::- REF- ITEM (9 <itemvar>)

<apply-construct>
::- APPLY (<procedure-name>)
::- APPLY (<procedure-name> ,

<arg,list-specifier>)
::- APPLY (DATUM (<item>))_
::- APPLY (DATUM (<item>) ,

<arg,list,specifier>)

<arg,list,specifier>
::- <list-expression>

I ::- ARG,LIST (<exprJist>)

18.2 Semant its

ASSIGN
One may give an item a procedure “datum”
using the ASSIGN statement. ASSIGN accepts
as its first argument an item expression (do
n o t u s e A N Y o r BINDIT). TO t h i s i s b o u n d
the procedure identified by its name or to the
“datum” of another procedure i tem. ,The
p r o c e d u r e m a y b e a n y t y p e . tkIwever, t h e
value i t r e t u r n s w i l l only b e aCC8SSibl8 i f t h e
p r o c e d u r e is a n i t e m v a r o r i t e m prOC8dUr8.
Apply assumes that whatever the prOC8dUr8
left in AC 1, (the register used by-all non-string
procedures to return a value) on exiting is an
item number. W a r n i n g : a prOC8dUr8 is no
o r d i n a r y d a t u m . Using DATUM on a

procedure item except in the above context
will not work. Use APPLY instead.

REF,ITEM
Reference items are created at run time by the
REF,ITEM construct and are used principally in
argument lists for the APPLY construct. The
datum of a reference item contains a pointer to
a data object, together with type information
about that object. To create a reference item
On8 8X8CUt8S

itm t REFJTEM (<rxprrsrion>)

A NE.W item is created. If the expression is (a)
a simple variable or an array element, then the
address will be saved in the item’s datum. If
the expression is (b) a constant or “calculated”
expression, then Sail will dynamically allocate a
cell into which the value of the expression will
be saved, and the address of that cell will be
saved in the datum of the item. The item is
t h e n n o t e d a s h a v i n g t h e d a t u m t y p e
“referencer’ and returned as the value of the
REFJTEM construct. One can slightly modify
this procedure by using one of the following
variations.

itm t REFJTEM (VALUE <rxpresrion>)

In this case, 8 temp cell Will always be allocated.
Thus X+3; XlcREFJTEM (VALUE X); X+4; would
cause the datum of Xl to point at a cell
containing 3.

itm c REFJTEM (? itmvr)
itm c REFJTEM (BIND itmvr)

Wh8r8 itmvr mUSt be an it8mVar o r a n e l e m e n t
of an it8mVar array, will cause the reference
item’s datum to contain information that Apply
can use to obtain the effect of using “? itmvr”
or “BIND itmvr” as an actual parameter in a
procedure Calf.

ARC-LIST
The ARG,LIST construct assembles a list of
“temporary” r e f e r e n c e items t h a t w i l l b e
deleted by APPLY after the applied procedure
ret urns. A r g u m e n t s t o A R G , L I S T m a y b e
anything legal for REFITEM. Thus

APPLY (proc, ARG,LIST (foe, bar, VALUE baz3)

is roughly equivalent to

114

SAN. - PROCEDUdE VARIABLES

tmplst c ([REFJTEM (foe), REFJTEM (b&r),
REFJTEM (VALUE bar)));

APPLY (proc, tmpht);
WHILE LENGTH (tmplst) DO DELETE (LOP (tmplst));

but is somewhat easier to type. Note that the
reference items created by ARG,LIST are just
like those Created by REFJTEM, except that

they are marked so that APPLY will know to kill
them.

APPLY
APPLY uses the items in the
<arg,list,specifier>, tOget her with the
environment information from the procedure
item (or from the current environment, if the
procedure is named explicitly) to make t h e
appropriate procedure call. <arg-list-specifier>
is an ordinary list expression, except that each
element of the list must be a reference item.
The elements of the list will be used as the
actuals in the procedure call. There must be at
least as many list elements as there are formals
in the procedure. The reference items must
refer to an object of the same type as the
corresponding formal parameter in the
procedure being called. (EXCEPTION: if the
formal parameter is an untyped i temvar or
untyped itemvar array, then the reference item
may refer to a typed itemvar or itemvar array,
respectively.) At present, type checking (but
n o t t y p e c o e r c i o n) i s d o n e . I f the formal

, parameter is a re ference parameter , then a
r e f e r e n c e t o t h e o b j e c t p o i n t e d t o b y t h e
r e f e r e n c e i t e m i s p a s s e d . If the formal
parameter is a value parameter, then the value
of the object pointed to by the reference item
is used. S imi lar ly , “?” formals are handled
appropriately when the reference item contains
a “?” or “BIND” reference. lf the procedure to
be called has no parameters, the
Qrg,fist-SpeCifi80 may be left Out.

A p p l y m a y b e u s e d w h e r e v e r a n i t e m v a r
procedure call is permitted. The value returned
w i l l b e w h a t e v e r v a l u e w o u l d n o r m a l l y b e
r e t u r n e d b y t h e t h e a p p l i e d prOC8dUr8, b u t
Apply wi l l t reat i t as an i tem number . Care
should therefore be taken when using the
r e s u l t of- A p p l y w h e n t h e procedure b e i n g
invoked is not itself an it8mVar prOC8dur8, sinC8
this may cause an invalid item number to be
used as a valid item (for instance, in a MAKE).
R e c a l l t h a t w h e n a t y p e d prOC8dUr8 (o r a n
Apply) is called at statement level, the value it

returns is ignored. R8r8 is an example of the
US8 Of APPLY.

BEGIN
LIST L;INTECER XX;
INTEGER ITEMVAR W;ITEMVAR 22;
REAL ARRAY AA(1:2];
PROCEDURE FOO (INTEGER X;

ITEMVAR Y,Z; REAL ARRAY A);
BEGIN
Y t NEW (XI;
2 t NEW (A);
A(X)c3;
END;

XXtO;
L c ((REFJTEM (XX), REFJTEM (YY),

REF,ITEM QL), REFJTEM (AA)));
XX t 2; AA[l J t AA[2) t 1;
APPLY (FOO, I);
COMMENT Y now contains rn itom whore

datum ir 2, 2 contains an itom whoso
datum is thr array (1.0, l.O),
A[1]m 1 .O, and A[2 113.0.;

END;

The variables accessed by a procedure called
with APPLY may not always be what you would
think they were. Temporary terminology: the
“environment” of a procedure is the collection
of variables, arrays and procedures
accessible to it. “Environment’* is not meant
to include the state of the associative store or
the universe of items. The environment of a
p r o c e d u r e i t e m i s t h e e n v i r o n m e n t o f t h e
ASSIGN, and that environment wi l l be used
reg.ardless o f t h e p o s i t i o n o f t h e A P P L Y .
S i n c e prOC8dUr8 i t e m s a r e u n t o u c h e d b y
block exits, yet environments are, it is possible
to Apply a procedure item when its
environment is gone; Sail catches most of these
situations and gives a n error message.
Consider the following example:

115

PROCEDURi VARIABLES SAIL

BEGIN
ITEM Pi LABEL L;
RECURSIVE PROCEDURE FOO (INTEGER J);
BEGIN “FOO”

L:

INTEGER I;
PROCEDURE BAZ;

PRINT (“J-“, J, * I=“, I);
IF J=l THEN

BEGIN

REIGN (P, B~zh
FOO f-1);
END

ELSE APPLY (DATUM (P));
END “FOO”;
FOO (1);
APPLY (DATUM (PI); COMMENT will cam. a

runtimo error - - soa dircusrion kbw;
END

The effect of the program is to Assign B a z
to P on the first instantiation of FOO, then
Apply P on the second (recursive)
instantiation. However , the envi ronment a t
the time of the Assign includes (1=2, J=l) bu t
t h e e n v i r o n m e n t a t t h e t i m e o f t h e A p p l y
includes (I-O, J-1) instead. At the time of
the APPLY, Bat is executed with the
environment from the time of the Assign, and
will print out

The Apply at L will cause a runtime error
message because the environment of the
Assign has been destroyed by the exiting of
Foo.

116

SAIL -’ INTERRUPTS

SECTION 19

INTERRUPTS

19.1 Introduction

The interrupt facilities of Sail are based on the
interrupt facilit ies provided by the operating
s y s t e m u n d e r w h i c h S a i l i s r u n n i n g . For
programs running a t SUAI or on TENEX this
resul ts in sat is factory in terrupt operat ion.
T O P S - 1 0 p r o g r a m s are at a d i s t i n c t
disadvantage because the operating system
does not prevent interrupt handlers from being
interrupted themselves. At SUAI the Sail
system uses new-style i n t e r r u p t s [Frost3
p r o g r a m s m a y a l s o e n a b l e f o r o l d - s t y l e
i n t e r r u p t s a n d t h e t w o w i l l w o r k t o g e t h e r
provided that the same condition is not enabled
under both kinds. On TENEX the
pseudointerrupt (PSI) system is used; programs
may use the interrupt system independently of
Sail. Only interrupt functions pertaining to the
current fork are provided. TOPS-10 interrupts
are directly tied to the APRENB system; Sail and
non-Sail use do not mix.

Sail gives control to the user program as, soon
a s t h e o p e r a t i n g s y s t e m i n f o r m s t h e S a i l

’ in ter rupt handler . Th is can be dangerous
because the Sail runtime system may be in the
middle of core allocation or garbage collection.
T h e r e f o r e S a i l p r o v i d e s a s p e c i a l runtime
D F R I N T w h i c h c a n r e c e i v e c o n t r o l i n t h e
restricted environment of an interrupt. DFRINT
records the fact that an interrupt happened and
that a particular user procedure is to be run at
the next po l l ing point (page 1071, w h e n t h e
i n t e g r i t y o f a l l runtime d a t a s t r u c t u r e s i s
(normally) assured. If the Sail interrupt handler
passes c o n t r o l t o D F R I N T t h e n t h e u s e r
procedure (which is run at the next polling
point) is called a “deferred in ter rupt
procedure”, even though the only connection it
has with interrupts is the special status and
p r i o r i t y g i v e n to it by the Sail Process
machinery. If DFRINT is not used then the user
procedure to- which the Sail interrupt handler
passes control is called an “immediate interrupt
procedure”. (This is orthogonal -to the TENEX
distinction between immediate and deferred TTY
interrupts.)

To use interrupts a program must. first tell Sail
what procedure(s) to, run, when an interrupt
h a p p e n s . T h e r o u t i n e s INTMAP and PSIMAP
perform this task. Deferred interrupts use the
Sail process machinery (page 104), so INTSET is
used to sprout the interrupt process. Then the
operating system must be told to activate (and
deactivate) interrupts for the desired
conditions. ENABLE and DISABLE are used by
t h e p r o g r a m t o t e l l S a i l , w h i c h t e l l s t h e
operating system.

A good knowledge of the interrupt structure of
the operating system which you are trying to
use should be considered a prerequisite for this
chapter.

19.2 Interrupt Routines

ATI, DTI

ATI (PSICHAN, CODE);
DTI (PSICHAN, CODE)

(TENEX only.) CODE is associated or dissociated
with PSICHAN, using the appropr iate JSYS.
E x e c u t i n g ATI is an additional step (beyond
ENABLE) which is necessary to receive TENEX
TTY interrupts.

DFRl IN

DFRl IN (AOBJN,PTR)

DFRllN is the procedure used by DFRINT to
record the interrupt and the AOBJN,PTR. Thus
DFRINT is (partially) equivalent to

SIMPLE PROCEDURE DFRINT; BEGIN
DFR 1 IN (<AOBJN,PTR specif iad

to INTMAP,) END;

T o h a v e m o r e t h a n o n e p r o c e d u r e r u n
(d e f e r r e d) a s t h e r e s u l t o f a n i n t e r r u p t , a
program may use DFRllN t o r e c o r d t h e
AOBJN,PTRs explicitly. Example:

117

INTERRUPTS SAIL

SIMPLE PROCEDURE LORCH;
BEGIN
DFRllN (<AOBJN pointor for F00 call>);
DFRIIN (<AOBJN pointer for BAZ cell>);
END;

INTMAP (INTTTY,INX, ZORCH, 0);
ENABLE (INITTY-INX);

Both FOO and BAZ will be run (deferred) as the
result of INTTTY,INX interrupt.

DFRINT

D F R I N T ’

DFRINT is a predeclared simple procedure which
handles the queueing of deferred interrupts.
Specify DFRINT to INTMAP for each interrupt
which will be run as a Sail deferred interrupt.
When run as the result of an interrupt, DFRINT
grabs the AOBJN-PTR pointer speci f ied to
INTMAP (or PSIMAP) and copies the block along
with other useful information into the circular
deferred interrupt buf fer . (See INTTBL.)
DFRINT then changes the status of the interrupt
process INTPRO from suspend to ready, and
turns on the global integer INTRPT.

DISABLE, ENABLE

DISABLE (INDEX);
ENABLE (INDEX)

S a i l t e l l s t h e o p e r a t i n g s y s t e m t o i g n o r e .
(DISABLE) or to send to the program (ENABLE)
interrupts for the condition specified by INDEX.
INDEX is a bit number (O-35) which varies from
system to system; consult [SysCallJ. INDEX is
sometimes called a “PSI channel” on TENEX.

INTMAP

INTMAP (INDEX, PROC, AOBJN,PTR)

(TENEX users should see PSIMAP.) The routine
INTMAP specifies that the simple procedure
PROC is to be run whenever the Sail interrupt

handler receives an interrupt corresponding to
the condition specified by INDEX. A separate
INTMAP must be executed for each interrupt
condition. If the same INDEX is specified on two
calls to INTMAP then the most recent call is the
o n e i n e f f e c t . PROC must be a simple
procedure with no formal parameters. If PROC
is a user procedure then PROC is run as a Sail
immediate interrupt.

AOBJN-PTR should be zero unless DFRINT is
specified for PROC. If PROC is DFRINT (and thus
will be a Sail deferred interrupt) then
AOBJN,PTR gives the length and location of a
block of memory describing a procedure call.
Such a block has the form

<numbor of words in the block,
-<lst prramrter to the procedure,
<swond parrmotor to the procedure,
“.

*last parameter
- 1 ,,<rddross of

to the procedure,
the procedure>

and an AOBJN,PTR to it has the form

-<number of words>,,<strrting address,.

Here is an example in which FOO (I, J, K) is to
be called as a deferred interrupt.

PROCEDURE FOO (INTEGER,i, j, k);

SAFE INTEGER ARRAY FOOBLK [1:5];
ITEMVAR IPRO; COMMENT for process itom of INTPRO;

%OBLK [I] + 5;
FOOBLK [2] t I;
FOOBLK [3] c J;
FOOBLK [4) c K;
FOOBLK [5) c 6 1 LSH 18)+LOCATION (FO0);

INTSET (IPRO t NEW, 0); COMMENT sprout INTPRO;
INTMAP (INTTTI,INX, DFRINT,

(-5 LSH 18) + LOCATION (FOOBLK[11));
ENABLE(INTTTI,INX)

NOTE: The procedure (FOO in this case) must
not be declared inside any process except the
main program. Otherwise, its environment will
not be available when INTPRO runs. However,
there is a rather complex way to get around
th is by us ing <environment>,,PDA as the last
word of the calling block. See a Sail hacker if
you must do this and don’t know what
<environment> or PDA mean.

118

SAIL-

INTSET

INTSET (ITM, OPTIONS)

INTSET sprouts the interrupt process INTPRO
with process options OPTIONS; see page 104.
The default priority of INTPRO is zero; this is
the h ighest poss ib le pr ior i ty and no other
process may have priority zero. Thus INTPRO
is sure to be run first at any polling point. ITM
must. be an item; it will become the process item
of INTPRO, the interrupt process. INTSET must
be called before any deferred interrupts are
used.

INTTBL

INTTBL (NEW-SIZE)

The buffer used to queue deferred interrupts is
initially 128 locations long. The queue has not
been know to overflow except for programs
which do not POLL very often. INTTBL changes
t h e b u f f e r s i z e t o N E W - S I Z E . D o n o t c a l l
INTTBL i f there are any deferred interrupts
pending; wait until they have all been executed.

P S I M A P

PSIMAP (PSICHAN, PROC,
AOBJNQTR, LEVEL)

(TENEX only.) This routine is the s a m e a s
INTMAP except that LEVEL may be specified.
ROUTINE is ‘executed at interrupt level LEVEL
(TENEX INTMAP is equivalent to PSIMAP (, , ,3).)
PROC and AOBJN,PTR have the same meaning
as for INTMAP.

19.3 Immediate hterrupts .

Do not access, create , or dest roy s t r ings,
records, arrays, sets, or lists. If thorn data
s t r u c t u r e s a r e n e e d e d t h e n u s e d e f e r r e d
interrupts.

To set up an-immediate interrupt say

- ’ INTERRUPTS

INTMAP Mndrx+, 4mpk procrdurr nrmo+, 0);
ENABLE Wndox>)

or on TENEX,
PSIMAP (&khan>, crimpk procrduro namw, 0, ePSIIev>);
ENABLE (&khan>)

w h e r e <index> i s a c o d e f o r t h e i n t e r r u p t
condition. To turn off an interrupt use

DISABLE Mndaxs)

The system will not provide user interrupts for
the specified condition until another ENABLE
statement is executed.

IN SUAI Sail
A procedure specified by an INTMAP statement
will be l xocuted at user interrupt level. A
pr.ogram operat ing in th is mode wi l l not be
interrupted, but must finish whatever it is doing
within 8/60 ths of a second. It may not do any
UUOs that can cause it to be rescheduled. Also,
the accumulators will not be the same ones as
those that were in use by the regular program.
Certain locations are set up as follows:

ACs 1 -6 Set up by the system a s i n
[FrostJ.

AC ‘15 (USER) Address of the Sail user
table.

AC ‘16 (SP) A temporary string push
down stack pointer (for the
f o o l h a r d y w h o c h o s e t o
disregard the warnings about
strings in immediate
interrupts).

A C ‘ 1 7 (P) A t e m p o r a r y p u s h d o w n
stack pointer.

XJBCNI (declared in SYS:PROCES.DEF
as an external in teger .) B i t
mask with a bit on
corresponding to the current
condition.

XJBTPC (declared in SYS:PROCES.DEF
as an external integer.) Full
PC word of regular user level
program.

The interrupt will be dismissed and the user
program resumed when the interrupt procedure
is exited. For more information on interrupt
Iovol programming consult [Frost1

119

INTERRUPTS SAIL

IN TOPS-1 0
The interrupt handler again will decode the
interrupt condition and call the appropriate
procedure. Since there is no “interrupt level”,
t h e i n t e r r u p t p r o c e d u r e m u s t n o t i t s e l f
generate any interrupt conditions, since this
will cause Sail to lose track of where in the
user program it was interrupted (trapped).

Also, the Sail interrupt module sets up some
temporary accumulators and JOBTPC:

AC ‘10 index of the interrupt
condition.

AC ‘15 (USER) Address of the Sail user ’
1 table.

AC ‘16 (SP) A temporary str ing push
down list. Beware.

A C ‘ 1 7 (P) A t e m p o r a r y p u s h d o w n
pointer.

JCBTPC (an external in teger) Ful l PC
word of regular user program.

The “real” acs -- i.e., the values of all
accumulators at the time the trap occurred --
are stored in locations APRACS to APRACS+17.
Thus you can get at the value of accumulator x
by declaring APRACS as an external integer and

. referring to MEMORY [LOCATION (APRACS)+x].
When the interrupt procedure is exited the acs
are restored from APRACS to APRACS+17 and
the Sail interrupt handler jumps to the location
s t o r e d i n J O B T P C (w h i c h w a s s e t b y t h e
operating system to the location at which the
trap occurred). Thus, if you want to transfer
control to some location in your user program,
a way to do it is to have an interrupt routine
like:

SIMPLE PROCEDURE IROUT;
BEGIN

EXTERNAL INTEGER JOBTPC;

JOBTPCcLOCATlON (GTFOO);
COMMENT GTFOO is N non-simpb procoduro

that contains I GO TO FDO, whew FDD
is th< bcrtbn to which control
is to be p-sod. This allows tha
“go to soivor” to k trlbd and cban _
up my unwrnkd procoduro 8dV8tbfW.i

END;

WARNING: this does not work very well if you
were interrupted at a bad time.

IN TENEX Sail
Sail initialization does a SIR, setting up the
t a b l e s t o e x t e r n a l i n t e g e r s L E V T A B a n d
CHNTAB, then an EIR to turn on the interrupt
system. PSIMAP fills the appropriate CHNTAB
location with XWD LEV,LEVROU, where LEVROU
is the address of the routine that handles the
interrupts for level LEV. LEVROU saves the
accumulators in blocks PSlACS, PS2ACS, and
PS3ACS, which are external integers, for levels
1 through 3 respectively. Thus for a level 3
interrupt accumulator x can be accessed by
MEMORY [LOCATION (PS3ACS) + x]. The PC can
be obtained by reading the LEVTAB address
with the RIR JSYS. Temporary stacks are set
up for both immediate and deferred interrupts.

See page 79 for an example of TENEX
immediate interrupts. The functions GTRPW,
RTIW, STIW provide for some of the information
set up in A+ under SUAI or TOPS-IO.

GTRPW

STATUS + GTRPW (FORK);

The trap status of FORK is returned, using the
GTRPW JSYS.

RTIW, STIW

AC1 t RTIW (PSICHAN, @AC2);
STIW (PSICHAN, AC2, AC3);

The indicated JSYS is performed.

19.4 Clock Interrupts

(This feature is currently available only in SUAI
Sail and TENEX Sail.) Clock interrupts are a kind
of immediate interrupt used to approximate time
sharing among processes. E v e r y t i m e t h e
scheduler decides to run a process it copies the
procedure’s t i m e q u a n t u m (s e e a l l a b o u t
quantums of processes, page 104) into the Sail
user tab le locat ion T IMER. C o n s i d e r t h e
following procedure, which is roughly
equivalent to the one predeclared in Sail:

1 2 0

SAIL

SIMPLE PROCEDURE CLKMOD;
IF (TlMER+TlMER- 1) S 0 THEN INTRPTc-I i

To time share several ready processes one
4 should inc lude pol l ing points in the re levant

process procedures and should execute the
following statements:

INTMAP (INTCLKJNX, CLKMOD, Oh
ENABLE (INTCLK,INX);

or on TENEX
PSIMAP (1) CLKMOD, 0,3h
ENABLE (1 h
PSIDISMS (1, 1000/6Oh

The macro SCHEDULE-ON-CLOCK-INTERRUPTS
defined .in cSUAIPSYS:PROCES.DEF is equivalent
to these statements. When the time quantum of
a process is exceeded by the number of clock
ticks since it began to run, the integer INTRPT
is set, and this causes the next polling point in
the process to cause a rescheduling (see about
rescheduling and INTRPT on page 107). The
current running process will be made ready,
and the scheduling algorithm chooses a ready
process to run.

In TENEX Sai l c lock interrupts are handled
d i f f e r e n t l y . S i n c e T E N E X d o e s n o t directly
pFovide f o r i n t e r r u p t i n g u s e r procerw o n
clock ticks, an inferior fork is crertod w h i c h
periodically generates the interrupts.

.
PSIDISMS

PSIDISMS (PSICHAN, MSTIME)

An inferior fork is created which interrupts the
current fork every MSTIME milliseconds of real
time. The inferior is approximately

UClITr HOVE 1,tlSTIllE ;HOU LONG *
DISHS ;co AUAY

HOVE1 1,-l ;HANDLE TO SUPERIOR
tlOVE 2, lb it MSKI~QELECTED CHANNEL
IIC jCAUSE RN INTERRUPT
JRST UAIT ; CONTINUE

PSIRUNTM

- I N T E R R U P T S

The current fork is interrupted every MSTIME
mi l l iseconds of runtime. T h e i n f e r i o r i s
approximately

URlT: IIOVE 1,MTIHE jHOU LONG
DISM
HOVE1 1,-l jSUPERIOR FORK
RUNTtl jRUNTIllE OF SUPERIOR
CAllGE 1,NEXTTIIlE ;READY?

JRST MIT INO
ROD 1,tlSTItlE
ROVER 1,NEXTTIflE !RECHRRGE
H O V E 1 1,-l ;SUPERIOR
tlOVE 2, tb i t aaskl ; SELECTED CHANNEL
IIC $RUSE INTERRUPT
JRST UAIT

KPSITIME

KPSITIME (PSICHAN)

Discontinues clock interrupts on PSICHAN.

S e v e r a l c h a n n e l s c a n b e i n t e r r u p t e d b y
PSIRUNTM or PSIDISMS, each with different
timing interval.

19.5 Deferred Interrupts

D e f e r r e d i n t e r r u p t s u s e t h e S a i l P r o c e s s
machinery (page 104) to synchronize the Sail
runtime s y s t e m w i t h t h e r u n n i n g o f u s e r
procedures in response to in terrupts . The
rout ine INTSET sprouts the interrupt process
INTPRO, the process which eventually does the
calling of deferred interrupt procedures. This
process is special because it is (ordinarily)
guaranteed to be the first process run after a
rescheduling. (See page 107 and page 109 for
information on rescheduling.) W h e n DFRINT
runs as the result of an interrupt, it copies the
calling block (specified to INTMAP with the
AOBJN,PTR) into the deferred interrupt buffer
and turns on the global integer INTRPT. At the
next polling point the process supervisor will
suspend the current process and run INTPRO.
INTPRD calls the procedures specified by the
calling blocks in the deferred interrupt buffer,
turns of f INTRPT, and suspends i tse l f . The
process scheduler then runs the process of
highest priority.

I PSIRUNTM (PSICHAN, MSTIME)
One very common use of deferred interrupts is

121

INTERRUPTS SAIL

to cause an event soon after some
asynchronous condition (say, TTY activation)
occurs. This effect may be obtained by the
following sequence:

INTSET (IPROcNEW, 0); COMMENT this will CIUS~
the interrupt process to bo sprouted and
rssignrd to IPRO. This process will oxecuto
procodura INTPRO and will hrva priority zero
(the highost possible).;

INTMAP (<index>, DFRINT,
DFCPKT (0, avant typo,, ervont noticq

<causa options>));

ENABLE (<index>);

In cSUAl~SYS:PROCES.DEF is the useful macro

DEFERRED-CAUSE-ON-INTERRUPT kindox>,
avant typo*, *r&co*, *option4

w h i c h m a y b e u s e d t o r e p l a c e t h e INTMAP
statement.

The following program illustrates how deferred
interrupts on TENEX can be accomplished.

BEGIN REQUIRE 1 NEW-ITEM;
1TEMVAR IPRO; COMMENT for procore itom;

PROCEDURE FOO (INTEGER I, J);
P R I N T WI “, I, * *, J);

INTEGER ARRAY FOOBLK[1~4);
FOOBLK[11 c 4; COMMENT a words;
FOOBLK(2) c 12; COMMENT rr#umontr;
FOOBLK(3J c 13;
FOOBLKt4) c .-I LSH 18 + LOCATIDN (FOD);

INTSET (IPRO c NEW, 0);
PSIMAP (1, DFRINT,

-4 LSH 18 + LOCATION (FOOBLK[1 I,, 3);
ENABLE (1 h ATI (1, “Q”-‘100);

DO BEGIN OUTCHR t”.“); POLL; END UNTIL FALSE;
END;

process scheduler to run INTPRO, where the
deferred interrupt ca l l ing b lock (which was
copied by DFRINT) is used to call FOO.

THE DEFERRED INTERRUPT PROCESS - INTPRO
INTPRO first restores the following information
which was stored by DFRINT at the’time of the
interrupt.

LOCATION CONTENTS

USER The base of the user table
(GOGTAB).

AC 1 Status of spacewar buttons.

AC 2 Your job status word (JBTSTS).
See [Frost J.

IJBCNIWSER) XJBCNI (i.e., JOBCNI) at time of
interrupt.

IJBTPC(USER) XJBTPC (i .e . , JOBTPC) at time
of interrupt.

IRUNNR(USER) I t e m n u m b e r o f r u n n i n g
process at time of interrupt.

Then INTPRO calles the procedure described by
the calling block. W h e n t h e p r o c e d u r e i s
finished, INTPRO looks to see if the deferred
interrupt buffer has any more entries left. If it
does, INTPRO handles them in the same manner.
Otherwise INTPRO suspends i tse l f and the
highest priority ready process takes over.

The program prints dots, interspersed with “HI
12 13” for each control-9 typed on the console.
Whenever a control-Q is typed, DFRINT buffers
the request and makes INTPRO ready to run;
then DFRINT OEBRKs (in the sense of the DEBRK
JSYS) back to the in terrupted code. At Sai l
u s e r l e v e l the P O L L s t a t e m e n t c a u s e s the0

122

SAIL- LEAP RUNTIMES

SECTION 20

LEAP RUNTIMES

W e w i l l f o l l o w t h e s a m e c o n v e n t i o n s f o r
describing Leap execution time routines as
were used in descr ib ing the runtimes of the
Algol section of Sail (see page 33).

CVSET

SET + CVSET (LIST)

CVSET returns a set given a list expression by
removing duplicate occurrences of items in the
list, and reordering the items into the order of
their internal integer representations.

CVLIST

20.1 Types and Type Conversion
LIST + CVLIST (SET)

TV PEIT

C O D E + TYPEIT (ITM);

The type of the datum l inked to an i tem is
called the type of an item. An item without a
datum is called untyped. TYPEIT is an integer
function which returns an integer CODE for the
type of the i tem expression ITM that is i ts
argument. The codes are:

0 - itam Cktod or now rlkcrtod
1 - untyped
2 - Bracketed Tripk itom
3 - l trin6
4 - rwl
5 - intogw
6 - sot
7 - list
8 - pruuiuro itom
9 - procoss itom
10 - l vint itom
1 1 - context itom
12 - roforonco itrm
13 - record pointor
14-irbol
15 - word clrss
23 - string wry
24 - rorl array
2 5 - intogrr array
26 - set rrrry
27 - list rrrry
31 - context r r r r y
33 - rocord pointar rrrry
3 7 = wror Who runtima urowod u p)

T h e u s e r i s e n c o u r a g e d t o u s e TYPEIT. It
requires the execution of only a few machine
instructions and can save considerable
debugging time.

CVLIST returns a list given a set expression. It
executes no machine instructions, but merely
le ts you get around Sail t y p e c h e c k i n g a t
compile time.

CVN and CVI

INTEGR + CVN (ITM);
ITM + CVI (INTEGR)

CVN returns the integer that is the internal
representation of the item that is the the value
o f t h e i t e m oxproraion ITM. C V I r e t u r n s t h e
i t e m t h a t .is r e p r e s e n t e d b y t h e i n t e g e r
expression INTEGR that is its argument. Legal
item numbers are between. (inclusively) 1 and
4095, but you’ll get in trouble if you CVI when
no item has been created with that integer as
its representation. A b s o l u t e l y n o e r r o r
checking is done. CVI is for daring men. See
about item implementation, page 86, for more
information about the internal representations
of items.

MKEVTT

MKEVTT (ITEM)

MKEVTT will convert its item argument to an
event type i tem. The old datum will be
overwritten. The type of the item will now be
“event type”. Any item except an event type
item may be converted to an event type item
by MKEVTT.

123

LEAP-RUNTIMES SAIL

20.2 Make and Erase Breakpoints 20.3 Pname Runt imes

BRKERS, BRKMAK, BRKOFF - CVIS.

BRKMAK (BREAKPT,PROCh
BRKERS (BREAKPT,PROCh
BRKOFF

In order to give the programmer some idea of
what is going on in the associative store, there
is a provis ion to interrupt each MAKE and
ERASE operat ion, a n d e n t e r a b r e a k p o i n t
procedure. The user can then do whatever he
wants with the three items of the association
being created or destroyed. ERASE Foo e ANY
l ANY will cause the breakpoint procedure to
be activated once for each association that
matches the pattern. MAKE it 1 e it2 r[it3 e it4
i it53 will cause the breakpoint procedure to be
activated twice..

“PNAME” c CVIS (ITEM, @FLAG)

The print name of ITEM is returned as a string.
Items have print names only if one includes a
REQIJIRE n PNAMES statement in his program,
w h e r e n i s a n e s t i m a t e o f t h e n u m b e r o f
pnames the program will use. An Item’s print
name is the identifier used to declare it, or that
pname explicitly given it by the NEW,PNAME
function (see below). FLAG is set to False (0) if
the appropriate string is found. Otherwise it is
set_ to TRUE t-l), and one should not put great
faith in the string result.

CVSI
The user’s breakpoint procedures must have
the form: ITEM + CVSI (“PNAME”, @FLAG)

PROCEDURE Brorkptgroc (ITEMVAR a, o, v 1 $

If -the associat ion being made or erased is
AeOaV, then directly before doing the Make or
Erase, Breakptgroc is called with the items A,
0, and V for the formals a, o, and v.

The Item whose pname is the same as the string
argument PNAME is returned and FLAG is set to
F A L S E i f s u c h a n I T E M e x i s t s . O t h e r w i s e ,
something very random is returned, and FLAG is
set to TRUE.

T o m a k e t h e p r o c e d u r e Breakpt-proc into a
breakpoint procedure for MAKE, call BRKMAK
with Breakptgroc as a parameter . To make
the procedure Breakpt-proc into a breakpoint
p r o c e d u r e f o r E R A S E , c a l l B R K E R S w i t h
B r e a k p t g r o c a s i t s p a r a m e t e r . T o t u r n o f f
both breakpoint procedures, call BRKOFF with
no parameters.

DEL,PNAME

DEL,PNAME (ITEM)

T h i s f u n c t i o n d e l e t e s a n y s t r i n g P N A M E
associates with this ITEM.

NOTE: BRKMAK, BRKERS and BRKOFF are not
predeclared. T h e u s e r m u s t i n c l u d e t h e
declarations:

NEW,PNAME

NEW,PNAME (ITEM, “STRING”)
EXTERNAL PROCEDURE BRKERS (PROCEDURE BP);
EXTERNAL PROCEDURE BRKMAK (PROCEDURE BP);
EXTERNAL PROCEDURE BRKOFF

This function assigns to the Item the name
“STRING”. Don’ t perform this twice for the
same Item without first deleting the previous
one. The corresponding name or Item may be
retrieved using CVIS or CVSI (see above). The
N U L L s t r i n g i s p r o h i b i t e d a s t h e s e c o n d
argument.

1 2 4

SAIL-

20.4 Other Useful Runtimes COP

L&TX

VALUE + LISTX (LIST, ITEM, N)

The value of this integer function is 0 if the
ITEM (an item expression) does not occur in the
list at least N (an integer expression) different
times in the LIST (a list expression). Otherwise
LISTX is the index of the Nth occurrence of
ITEM in LIST. For example,

LISTX (((Foe, Brr, Gorp, Bat}), 8ar, 2) ia 4 .

LEAP RUNTIMES

ITEM + COP (SETEXPR);
ITEM + COP (LISTEXPR)

COP will return the first item of the set or list
just as LOP (above) will. However, it will NOT
remove that item from the set or list. Since the
set or list will be unchanged, COP’s argument
may be a set or list expression. As with LOP,
an error message will be returned if one COPS
an empty set or a null list.

LENGTH

VALUE + LENGTH (SETEXPR);
VALUE + LENGTH (LISTEXPR)

FIRST, SECOND, THIRD

ITEM + FIRST (BRAC,TRIP-ITEM);
ITEM + SECOND (BRAC,TRIP,ITEM);
ITEM + THIRD (BRAC,TRIP-ITEM)

The Item which is the FIRST, SECOND, or THIRD
element of the associat ion connected to a
bracketed t r ip le i tem (BRAC,TRIP- ITEM) is
returned. If the item expression
B R A C , T R I P - I T E M d o e s n o t e v a l u a t e t o a
bracketed triple, an error messages issues
forth.

ISTRIPLE

RSLT + ISTRtPLE (ITM)

If ITM is a bracketed triple item then ISTRIPLE
returns TRUE; otherwise i t re turns FALSE.
ISTRIPLE (ITM) i s equivalent t o (TYPEIT (ITM) -
a.

LOP

ITEM + LOP @SETVARIABLE);
I T E M + LCP (@LISTVARIABLE)

LOP will remove the first item of a set or list
from the set or list, and return that item as its
value. Note that the argument must be a
variable because the contents of the set or list
is changed. If one LOPS an empty set or a nul l
list, an error message will be issued. ,

LENGTH will return the number of items in that
set or list that is its argument. LENGTH (S) - 0
is a m u c h faster test for the null set or list
that S - PHI or S - NIL.

SAMEIV

VALUE t SAMEIV (ITMVARl, ITMVARZ!)

SAMEIV is useful in Matching Procedures to
solve a particular problem that arises when a
Matching Procedure has at least two ? itemvar
arguments. An example will demonstrate the
problem:

FOREACH X J Matchingproc (X, X) DO
FOREACH X, Y I Matchingproc (X, Y) 00 . . . ;

Clear ly , the matching procedure wi th both
arguments the same may want to do something
different from the matching procedure with two
di f ferent Foreach i temvars as i ts arguments .
However, there is no way inside the body of
the matching procedure to differentiate the two
cases since in both cases both itemvar formals
have the value BINDIT. SAMEIV will return True
only in the first case, namely 1) both of its
arguments are ? itemvar formals to a matching
p r o c e d u r e , 2) b o t h h a d t h e s a m e Foreach
itemvar passed by reference to them. It will
r e t u r n F a l s e u n d e r a l l o t h e r c o n d i t i o n s ,
including the case where the Foreach itemvar is
bound at the time of the call (so it is not passed
by reference, but its item value is passed by
value to both formals).

125

LEAP -RUNTlMES SAIL

2 0 . 5 Runtimes f o r U s e r C a u s e a n d
Interrogate Procedures

CAUSE1

ITMVAR t CAUSE1 (ETYPE, ENOT, OPTIONS);
ITMVAR + CAUSE1 (ETYPE, ENOT);
ITMVAR + CAUSE1 (ETYPE)

SETCP AND SETIP

SETCP (ETYPE, PROC,NAME);
SETCP (ETYPE, DATUM (PROCJTEM));
S E T I P (ETYPE, PROC,NAME)~

’SETIP (ETYPE, DATUM (PROCJTEM))

SETCP and SETIP associate with the event type
speci f ied by the i tem expression ETYPE, a
procedure specified by its name or the datum
of a procedure item expression.

After the SETCP, whenever a Cause statement
of the specified event type is executed, the
procedure s p e c i f i e d b y P R O C , N A M E o r
PROCJTEM is ca l led. The procedure must
have three formal parameters corresponding to
the event type, event notice, and options words
of the CAUSE statement. For example,

CAUSE1 is essentially the procedure executed
for CAUSE statements if no SETCP has been
d o n e f o r t h e e v e n t t y p e E T Y P E . S e e t h e
description of the Sail defined Cause statement,
page 112, for further elucidation.

ASKNTC

ITMVR + ASKNTC (ETYPE ,OPTIONS);
ITMVR + ASKNTC (ETYPE)

A S K N T C i s t h e p r o c e d u r e e x e c u t e d f o r
INTERROGATE statements if no SETIP has been
d o n e f o r t h e e v e n t t y p e E T Y P E . S e e t h e
descr ipt ion of the Sai l def ined Interrogate
statement, page 113, for further elucidation.

PROCEDURE CAUSEIT (ITEMVAR ETYP, ENOT;
INTEGER OP)

ANSWER
After SETIP, whenever an Interrogate statement
of the specified event type is executed, the
procedure s p e c i f i e d b y P R O C , N A M E o r
PROCJTEM is called. The procedure must have

~ two formal parameters corresponding to the
e v e n t t y p e and opt ions words of the
Interrogate statement and return an item. For
example,

ITEM PROCEDURE ASK-IT (ITEMVAR ETYP;
INTEGER OP)

It is an error if a Cause or Interrogate
statement tries to call a p r o c e d u r e w h o s e
environment (static - as determined by position
of its declaration, and dynamic - as determined
by the execution of the SETCP or SETIP) has
been .exited.

BITS + ANSWER (ETYPE, ENOT, PROCJTEM)

A N S W E R w i l l a t t e m p t t o w a k e u p f r o m a n
interrogate wait the process specified by the
item expression PROCJTEM. If the process is
not in a suspended state, Answer will return an
integer with the bit ‘400000 in the right half
(NOJOY in cSUAIPSYS:PROCES.DEF) t u r n e d o n .
If the process is suspended, it will be made
ready, and removed from any wait queues it
may be on. The b i ts corresponding to the
options word of the interrogate statement that
put it in a wait state will be returned.
Furthermore, if the SAY-WHICH bit was on, the
appropriate association, namely EVENT-TYPE Q
ENOT i ETYPE, will be made. See page 112 for
more information on the use of ANSWER.

\

See page 112 and page 113 for more
informat ion on the use of SETCP and SETIP,
respectivaly. DFCPKT

AOBJN,PTR e. DFCPKT (@BLOCK, EVTYP,
EVNOT, OPTS)

This routine is a convenience for causing an
event as a deferred interrupt. If BLOCK is non-

1 2 6

SAIL-

zero then it should be an array with at least 5
elements; if BLOCK is zero then a five-word
block is allocated. DFCPKT constructs a call for
CAUSE (EVTYP, EVNOT, OPTS) in this block and
returns an AOBJN pointer to it.

-LEAP RUNTIMES

127

BASIC CONSTRUCTS SAIL

SECTION 2 1

B A S I C C O N S T R U C T S

21.1 S y n t a x

<variable>
::- 4dent if ier>
::- <identifier> [<subscript-list>]
::- DATUM (4ypeditem,expression>)
::- DATUM (<typed-item-expression>) [

<subscript-list>]
::= PROPS (<item-expression>)
::= <context-element> .

I

::- <record-class> : <field> [
<record-pointer-expression>]

<typed-item-expression>
::- <typed,itemvar>
::- <typed-item>
::= <typed-itemvar,procedure>
::- <typed-item-procedure>
::- <typeditemvar,array>

[<subscript-list>]
::- <typed-item-array>

[<subscript-list.?]
::- <itemvar> t <typed-item-expression>
::- IF <boolean-expression> THEN

<typed-item-expression> ELSE
<typed-item-expression>

::- CASE <algebraic-expression> OF (
4ypeditem,expressionJist>)

<typed-item-expression-list>
::- <typed-item-expression>
::- <typed-item-expression-list> , ’

<type-item-expression>

<subscript-list>
::- <algebraic-expression>
::- <subscript-list> ,

<algebraic-expression>

21.2 Semantics

VARIABLES
If a variable is simply an identifier, it
represents a single value of the type given in
its declaration.

If it is an identifier qualified by a subscript list
it represents an element from the array bearing
t h e n a m e o f t h e i d e n t i f i e r . H o w e v e r , a n
identifier qualified by a subscript list containing
o n l y a s i n g l e s u b s c r i p t m a y b e e i t h e r a n
element from a one dimensional array, or an
element of a list. Note that the token “00” may
be used in the subscript expression of a list to
stand for the length of the list, e.g. LISTVAR[oo-
2]+LISTVAR[oo-11.

The array should contain as many dimensions as
there are elements in the subscript l ist. A[IJ
represents the 141th element of the vector A (if
the vector has a lower bound of 0). B[l, JJ is
t h e e l e m e n t f r o m t h e 14th r o w a n d J + l t h
column of the two-d imensional ar ray 8. T o
expla in the indexing scheme prec ise ly , a l l
arrays behave as if each dimension had its
origin at 0, with (integral) indices extending
infinitely far in either direction. However, only
the part of an array between (and including)
t h e l o w e r a n d u p p e r b o u n d s g i v e n i n t h e
declaration are available for use (and in fact,
these are the only parts allocated). If the array
is not declared SAFE, each subscript is tested
against the bounds for its dimension. If it is
outside its range, a fatal message is printed
identifying the array and subscript position at
fault. SAFE arrays are not bounds-checked.
Users must take the consequences of the
journeys of errant subscripts for SAFE arrays.
The bounds checking causes at least three
extra machine instructions (two of which are
always executed for valid subscripts) to be
a d d e d f o r e a c h s u b s c r i p t i n e a c h a r r a y
reference. The algebraic expressions for lower
and upper bounds in array declarations, and for
subscripts in subscripted variables, are always
conver ted to In teger va lues (see page 23)
before use.

For more information about the implementation
of Sail arrays, see page 157.

DATUMS
DATUM (X) where X is a typed item expression,
will act exactly like a variable with the type of
the item expression. The programmer is

I 128

SAIL _

responsible for seeing that the type of the item
is that which the DATUM construct thinks it is.
For example, the Datum of a Real ltemvar will
a lways in terpret the contents of the Datum
location as a floating point number even if the
program has assigned a string item to the Real
Itemvar.

PROPS
The PROPS of an item will always act as an
integer variable. Any algebraic value assigned
to a props will be coerced to an integer (see
about type conversions, page 23) then the low
order 12 bits will be stored in the props of the
item. Thus, the value returned from a props
will always be a non-negative integer less than
‘7777 (4095 in decimal).

RECORD FIELDS
A field in a record is also a variable. The
variable is allocated and deallocated with the
other fields of the same record as the result of
calls to NEW-RECORD and the record garbage
collector. For more information see page 65.

IDENTIFIERS
You will notice that no syntax was included for
t h e n o n - t e r m i n a l s y m b o l s < i d e n t i f i e r > o r
<constant>. It is far easier to explain these
constructs in an informal manner.

A Sail letter is any of the upper or lower case
letters A through Z, or the underline character

.(, or !, they are treated equivalently). Lower
case letters are mapped into the corresponding
upper case letters for purposes of symbol table
comparisons (SCHLUFF is the same symbol as
Schluf f) . A d ig i t is any of the characters 0
through 9.

An identifier is a string of characters consisting
of a letter followed by virtually any number of
letters and digits There must be a character
which is neither a letter nor a digit (nor either
of the characters “.” or “S”) both before, and
after every identifier. In other words, if YOU
can’t .determine where one identifier ends and
another begins in a program you have never
seen before, well, neither can Sail.

There is a set of identifiers which are used as
Sail delimiters (in the Algol sense -- that is,
XGIN is treated by Algol as if it were a single
character; such an approach is not practical, so
a reserved identifier is used). These identifiers
are called Reserved Words and may not be

BASIC’CONSTRUCTS

used for any purpose other than those given
expl ic i t ly in the syntax, or in declarat ions
(DEFINES) which mask their reserved-word
status over the scope of the declarations. E.g.,
“INTEGER BEGIN” is allowed, but a Synonym (see
page 10) should have been provi.ded for BEGIN
if any new blocks are desired within this one,
because BEGIN is ONLY an Integer in this block.
A n o t h e r s e t o f i d e n t i f i e r s h a v e p r e s e t
declarations - - these are the execut ion t ime
functions. These latter identifiers may also be
redefined by the user; they behave as if they
were declared in a block surrounding the outer
block. A list of reserved words and
predeclared identifiers may be found in the
appendices. It should be noted that due to the
stupidi ty of the parser , i t is impossible to
d e c l a r e c e r t a i n r e s e r v e d w o r d s t o b e
identifiers. For example, INTEGER REAL; will
g ive one the syntax error “Bogus token in
declaration”.

Some of the reserved words are equivalent to
certain special characters (e.g. “1” for “SUCH
THAT”). A table of these equivalences may be
found in the appendices.

ARITHMETIC CONSTANTS

12369 Integer with decimal value 12369
’ 12357 Integer with octal value 12357
123. Real with floating point value 123.0
0 123.0 Real with floating point value 123.0
.524 Real with floating point value 0.524
5.3~2 Real with floating point value 530.0
5.342&-3 Real with floating point velur 0.005342

The character ’ (right quote) precedes a string
o f d i g i t s t o b e c o n v e r t e d i n t o a n O C T A L
number.

If a . or a Q) appears in a numeric constant, the
type of the constant is returned as Real (even
if it has an integral value). Otherwise it is an
integer. Type conversions are made at compile
time to make the type of a constant
commensurate with that required by a given
operation. Expressions involving only constants
are evaluated by the compiler and the resultant
values are substituted for the expressions.

The reserved word TRUE is equivalent to the
I n t e g e r (B o o l e a n) c o n s t a n t - 1 ; F A L S E i s
equivalent to the constant 0.

129

BASIC CONSTRUCTS

STRING CONSTANTS
A String constant is a string of ASCII characters
(any which you can get into a text file)
delimited at each end by the character ‘I. If the
” character is desired in the string, insert two ”
c h a r a c t e r s (a f t e r t h e i n i t i a l d e l i m i t i n g ”
character, of course).

A S t r i n g c o n s t a n t b e h a v e s l i k e a n y o t h e r
(algebraic) primary. I t is or ig inal ly of type
Str ing; but may be converted to In teger by
extracting the first character if necessary (see
page 23).

The reserved word NULL represents a String
constant containing no characters (length-o).

Examples: The left hand column in the table that
follows gives the required input

INPUT RESULT LENGTH

“R STRING” A STRING 8
“UHRT’S ““DOK”” IIECIN?” UHAT’S “ D O K ” HERN? 18
“““R QUOTED STRING”“” “A QUOTED STRING” 17
II u

NULL :

COMMENTS
If the scanner detects the identifier COMMENT,
all- characters up to and including the next
semicolon (;) will be ignored. A comment may
appear a n y w h e r e a s long as the word
COMMENT is properly delimited (not in a String

‘constant, of course);

A s t r i n g constant appearing j u s t b e f o r e a
statement also has the effect of a comment.

130

SAIL

SAIL- USING SAIL

SECTJON 2 2

USING SAIL

22.1 For TOPS-1 0 Beginners

If you simply want your Sail program compiled,
loaded, and executed, do the following:

-I 1.

2.

3.

4.

5.

6.

C r e a t e a f i l e c a l l e d “XXXXXX.SAI”
w i t h y o u r p r o g r a m i n i t , w h e r e
“XXXXXX” may be any name y o u
wish.

Get your job to monitor level and
type “EXECUTE XXXXXX”.

T h e s y s t e m p r o g r a m (v a r i o u s l y
called SNAIL, COMPILE, RPG) which
handles requests like EXECUTE will
then start Sail. Sail will say “Sdil:
XXXXXX”. When Sail hits al page
boundary in your file, it will type
“1” or whatever the number of the
page that it is starting to read.

When the compilation is complete
Sail swaps to the loader, which will
say “LOADING”.

When the loading is complete the
loader will type “LOADER nP CORE”
w h e r e n i s y o u r c o r e s i z e . T h e
loader then says “EXECUTION”.

When execution is complete Sail will
type “End of Sail execution” and
exit.

At any t ime during 3 through 6 above, you
could get an error message from Sail of the
f o r m . “DRYROT: < c r y p t i c text>l o r f r o m t h e
system, such as “ILL MEM REF”, “ILLEGAL UUO”
etc. followed by some core locations. These
are Sai l bugs. You will have to see a S a i l
hacker about them, or attempt to avoid them by
rewriting the offending part of your program,
or try again tpmorrow.

If you misspell the name of your file then SNAIL
will complain “File not found: YYYYYY” where
‘WYYW” is your misspelling. Otherwise, the
error messages you receive during 3 above will

be compi la t ion er rors (bad s y n t a x , t y p e
mismatch, begin-end mismatch, unknown

(identifiers, etc.). See page 138 about these.

If you get through compilation (step 3) with no
error messages, the loading of ‘your program
will rarely fail. If it somehow does, it will tell
you. See a Sail hacker about these.

If you also get through loading (step 4) with no
errors, you aren’t yet safe. Sail will give you
error messages during the execution of your
program if you exceed the bounds of an array,
re fer to a f ie ld of a nul l record, e tc . See
section 1 about these too.

If you never get an error message, and yet you
don’t get the results you thought you’d get,
then you’ve probably made some mistakes in
your programming. Use BAIL (or RAID or DDT)
and sect ion 2 to a id in debugging. It is
quite rare for Sail to have compiled runable but
incorrect code from a correct program. The
only way to ascertain whether this is the case
is to isolate the section of your program that is
causing Sail to generate the bad code, and then
p a t i e n t l y s t e p t h r o u g h i t i n s t r u c t i o n b y
instruction using RAID or DOT, and check to see
that everything it does makes sense.

22.2 For TENEX Beginners

If.you simply want your Sail program
loaded, and executed, do the following.

compiled,

1.

2.

3.

4.

C r e a t e a f i l e c a l l e d “XXXXXX.SAI”
w i t h y o u r p r o g r a m i n i t , w h e r e
XXXXXX may be any name you wish.

Type “Sail”, followed by a carriage
return, to the TENEX EXEC.

The EXEC will load and start Sail.
Sail will say “Tenex Sail 8.1 8-5-76
t “. T y p e “XXXXXX<cr>” (y o u r f i l e
name). Sail will create a file
XXXXXX.REL, and will type the page
number of the source file as it
begins to compile each page.

When Sail finishes it will type “End
of compilation.“. Return to the EXEC
and type “LOADER<crs”. The loader
will type

I’ ”*. Type

131

USING SAIL SAIL

“SYS:LOWTSA,DSK:XXXXXXS”, w h e r e
S is the altmode k e y . T h i s l o a d s
your program into core.

5. When the LOADER exits, the program is
loaded. You may now either SAVE the program,
for later use, or run it with the EXEC START
command.

22.3 The Complete use of Sail

The general sequence of events in using Sail is:

1. Start Sail.

2. Compile one or more files into one
or more binary files, with possibly a
listing file generated.

3 . L o a d t h e b i n a r y f i l e (s) w i t h t h e
appropriate upper segment or with
the Sail runtime l i b r a r y , a n d
possibly with RAID or DDT.

4. Start the program, possibly under
the control of BAIL, RAID or DDT. (

5 . Let the program finish, or stop it to
use a debugger or to reallocate .
storage with the REENTER command.

S t a r t i n g S a i l i s a u t o m a t i c w i t h t h e S N A I L
commands described below. Otherwise, “R SAIL”
will do.

22.4 Compiling Sail Programs

When started explicitly by monitor command,
Sail will type back an %* at you and wait for
you to type in a <command line? It will do the
compi!ation specified by that command line, then
ask for another, etc.

If you use SNAIL then follow the SNAIL
c o m m a n d w i t h a list o f < c o m m a n d line%
separated-by commas. The compilation of each
<command line> will be done before the next
<command line> is read and processed. The
SNAIL commands are:

EXocuto compile, lord, start
TRY compib, lord with BAIL, start
DEBuq compile, lord with BAIL,

start BAIL
LOAd compile, lord
PREParo compile, lord with BAIL .
COMpile compilo

See [MonCom] for more information about t h e
use of SNAIL and the switches available to it.

COMMAND LINE SYNTAX
TOPS-10 COMMAND LINE SYNTAX

<command-line>
::= <binary name> <listing-name> +

<sourceJist>
::= <file,spec> Pp

I ::- <file,spec> !

<binary-name>
::- <file,spec> .
::- <empty>

<listing-name>
::- , <file,spec>
::- <empty>

<source-list>
::- <f ile,spec>
::- <sourceJist> , <file,spec>

<file,spec>
::- <file-name> <file,ext> <proj-prog>
::- <device-name> <file,spec> <switches>
::- <device-name> <switches>

<file-name>
::- <legal,sixbitid>

<file,ext>
::- . <legal,sixbit,id>
::- <empty>

(proj.prog>
::- [<legal,sixbit,id> ,

<legal,sixbitJd>]
::- <empty>

132

SAIL-

<device-name>
::- <legalsixbitJd>

<switches>
‘::- (<unslashed,switchJist>)
::- <slashed,switchJist>
::- <empty>

<unslashed,switchJist>
::- <switch,spec>
::- <unslashed,switchJist> <switch,spec>

<slashed;switchJist>
::- / <switch,spec>
::- <slashed,switchJist> / <switch,spec>

<switch-spec>
::- <valid-switch-name>
::- <signed-integer s <valid-switch-name>

<valid,switch,name>
::- A
::- B
::- C
::- 0
::- F
::- H
::- K
::- L

::- P
::- 0
::- R .
::- S
::- v
::* W
::- x

TENEX SAIL COMMAND LINE SYNTAX

<commrndJine>
::- <file-list> CR
::- <fileJist> , CR
::- <file-list> +
::- <fileJist> , +
::- + <file Jist>
: : - ?

<fileJirt>

USING SAIL

::- <file> , <fileJist>

<subcommand>
::- CR
::- <control-R>
::- <control-L>
::- / <switch>
::- ?

<switch>
::- <number> <switch>
::- <TOPS-IO switch>
::- G
::- I
::- T

CCMMAND LJNE SEMANTICS
All this is by way of saying that Sail accepts
c o m m a n d s i n e s s e n t i a l l y t h e s a m e f o r m a t
accepted by other processors written for the
operating system on which you are running.
The binary file name is the name of the output
device and f i le on which the ready to load
object program will be written. The listing file,
if included, will contain a copy of the source
files with a header at the top of each page and
an octal program counter entry at the head of
each line (see page 134). The listing file name
is often omitted (no listing created). The source
file list specifies a set of user-prepared files
which, when concatenated, form a valid Sail
program (one outer block).

If file,ext is omitted from the binary-name then
the extension for the output file will be .REL.
The default extension for the listing file is .LST.
Sail will first try to find source files under the
names given. If this fails, and the extension is
omitted, the same file with a .SAI extension will
be tried.

I f d e v i c e - n a m e i s o m i t t e d t h e n D S K : i s
assumed. If proj-prog is omitted, the project-
programmer number for the job is assumed.

S w i t c h e s a r e p a r a m e t e r s w h i c h a f f e c t t h e
operation of the compiler. A list of switches
may appear after any fi le name on TOPS-lo;
use subcommand mode on TENEX. The
parameters specified are changed immediately
af ter the f i le name associated wi th them is
processed. The meanings ‘of the switches are
given below.

1 3 3

USING SAIL

The binary, listing and (first) source file names
are processed before compilation -- subsequent
source names (a n d t h e i r s w i t c h e s) a r e
processed whenever an end-of-file condition is
detected in the current source file. Source files
which appear after the one containing the outer
block’s END delimiter are not ignored, , but
should contain only comments.

Each new line in the command file (or entered
from the teletype) specifies a separate program
compilation. Any number of programs can be
compiled by the same Sail core image.

The file,spec@ command causes the compiler to
open the specified file as the command file.
Subsequent commands will come from this file.
If any of these commands is file,spec@, another
switch will occur.

1 T h e f i l e s p e c ! command wi l l cause the
specified file to be run as the next processor.
This program will be started in “RPG mode”.
That is, it will look on the ‘disk for its
commmands if its standard command file is there
-- otherwise, command control will revert to
the TTY. The default option for this file name
is .DMP. The default device is SYS.

TENEX Sail command syntax is much like the
syntax of the TENEX DIRECTORY command.
Filenames are obtained from the terminal using

recognition; .SAI, .REL, and .LST are the default
extensions. Command lines ending in comma or
comma backarrow enter subcommand mode.
Command lines ending in backarrow c a u s e
termination of command scanning and start
compilation; the program will be loaded with
DOT a n d D D T w i l l b e s t a r t e d . A f i l e n a m e
appearing before a backarrow is taken as a
source file; the .REL file will have the s a m e
(first) filename. A command line beginning with
backarrow causes no .REL file to be generated.
In subcommand mode the characters control-R
and control-L allow complete specification of
the &inary and listing file names, respectively.

SWITCHES
T h e f o l l o w i n g t a b l e d e s c r i b e s t h e S a i l
parameter_ switches. I f t h e s w i t c h l e t t e r i s
preceded in the table by the D character, a
decimal number is expected as an argument. 0
is the default value. The character 0 indicates
t h a t a n o c t a l n u m b e r i s e x p e c t e d f o r t h i s
switch. Otherwise the argument is ignored.

SAIL

ARG SWITCH FUNCTION

0 A

3 B

C

D D

0 F

The octa l number 0 speci f ies b i ts
which determine the code compiled in
certain cases.

1 usa KIFIX for rorl to integer conversion
2 use FlXR

;otherwiso use UUOFIX
4 uao FLTR for integer to rrrl conversion

athorwiso ueo UUOFLOAT
10 UIO ADJSP whrnwrr posriblo

;otherwiro use SUB, or ADD with
PDLOV drtection

20 ueo FORTRAN- IO calling soquenco for ceiling
Fortrrn Procedurrs; l lsr old F40 style

The compiler is initialized with /OA;
the compiled code will run on a KAlO
using F40 c a l l i n g s e q u e n c e f o r
Fortran Procedures.

The octa l number 0 speci f ies b i ts
which determine how much
information is produced for BAIL.

1 Program counter to source/listing directory.
2 Include information on all symbols. If not

soloctod thrn do not includr non-intornrl
locrl vrrirblrs.

4 SIMPLE procedures get proc. descriptors.
10 Don’t rutometicrlly lord SYS:BAIL.REL.
2 0 Makr the Sail predrclrrrd runtimer

known by requiring SYS:BAIPDn.REL.

This switch turns on CREFfing. T h e
listing file (which must exist) will be
in a format suitable for processing by
CREF, the program which will
generate .a cross-reference listing of
your Sail program from your listing
files.

If the decimal number D is zero or
d o e s n o t a p p e a r t h e n d o u b l e t h e
amount of space for the push down
stack used in expanding macros (see
page 57). If D is not zero then set
the stack size to 0. Use this switch if
the compiler indicates to you that this
stack has overflowed. This shouldn’t
happen unless you nest DEFINE calls
extremely deeply.

0 is an octal number which specifies
exactly what kind of listing format is

1-34

SAIL

0 L

generated. 0 conta ins informat ion
about 7 separate l is t ing features ,
each of which is assigned a bit in 0.

1 L is t the progrsm counter (soa / L *witch).
2 List with linr numbrrr from the source text.
4 Liet the macro nrmor kforo oxprmion.
10 Expand macro texts in tha lirting file.
20 Surround arch listed mrcro rxpansiofi

with < and > .
40 Suspend listing.
100 No brnnrr rt the top of rrch pago. ’

[This is a wry to “prmrnently” l xprnd
mscroa. A /l 10F listing is (almost) ,
suitsbk as s Ssil source fik,)

The compiler is initialized with /7f
(i.e., l i s t p r o g r a m c o u n t e r , l i n e
numbers, and macro names).

(TENEX only) Load after compilation,
exiting to the monitor.

(Default on TENEX) This switch is
used to make your program sharable.
When loaded, the code and constants
will be placed in the second (write-
protected) segment, while data areas
will be allocated in the lower, non-
shared segment. Programs compiled
with /H request SYS:HLBSAn as a
‘ l i b r a r y (<SAIL>HLBSAn o n T E N E X) .
T h e s h a r a b l e l i b r a r y HLBSAn i s
i d e n t i c a l t o LIBSAn, except that i t
expects to run mostly in the upper
(shared) segment. Recall that n is the
current version number. At SUAI, use
the moni tor command SETUWP to
wr i te protect the upper segment .
Then SSAVE the core image.

(TENEX only) Do not compile two-
segment code.

The counter mechanism of Sai l is
activated, enabling one to determine
the frequency of execution of each
statement in your Sail program. See
Appendix F, the Statement Counter

System. This switch is ignored unless
a listing is specified with a /LIST.

In compiling a S a i l p r o g r a m , a n
internal var iable ca l led PCNT (for
program counter) is incremented (by

D P

I

D Q

D* R

USING SAIL

one) for each word of code
g e n e r a t e d . T h i s v a l u e , i n i t i a l l y 0 ,
represents the address of a word of
code in the running program, relative
to the load point for this program.
The current octal value of PCNT plus
the value of, another internal variable
called LSTOFFSET, is printed at the
beginning of each output l ine in a
l i s t i n g f i l e . F o r t h e f i r s t p r o g r a m
compiled by a given Sail core image,
LSTOFFSET is in i t ia l ly 0 . I f the L
switch occurs in the command and the
value 0 is non-negative, 0 replaces
the current value of LSTOFFSET. If 0
is -1, the current size of DDT is put
into LSTOFFSET. If 0 is -2, the
current size of RAID is used. In “RPG
m o d e ” t h e f i n a l v a l u e o f P C N T i s
a d d e d to L S T O F F S E T a f t e r e a c h
compilation. Thus by deleting all .REL
files produced by Sail, and by
compiling all Sail programs which are
to be loaded together with one RPG
command which includes the L switch,
you can obtain listing files such that
each of these octal numbers
represents the actual starting core
address of the code produced by the
line it precedes. At the time of this
writing, SNAIL would not accept minus
signs in switches to be sent to
processors. Keep trying.

Set the size of the system pushdown
list to D (decimal). If D is zero or
d o e s n o t a p p e a r t h e n d o u b l e t h e
(current) size of the list. Thus
/35P/P will first set the stack size to
35, then double it to 70. It has never
been known to overflow.

Set the size of the string pushdown
list to D (decimal). If D is zero or
does not appear then double the size
of the list. NO trouble has been
encountered here, either.

Set the size of the compiler’s parsing
and semantic stacks to D (decimal). If
D is zero or does not appear then
double the size of the stacks. A long
conditional statement of the form (IF
. . . THEN . . . ELSE IF . . . THEN . . .
ELSE IF . . .) h a s b e e n k n o w n t o

135

- --

USING SAIL SAIL

cause these stacks to overflow their
normally allocated sizes.

X Enable compiler save/continue (page
159).

D S The size of String space is Set to D
words. S t r i n g s p a c e u s a g e i s a
function of the number of identifiers,
especially macros, declared by the
user. In the rare case of String
space exhaustion, 5000 is a good first
number to try.

Here is an example of a compile string which a
user who just has to try every bell and
whistle available to him might type to compile
a file named NULL:

COMPILE /LIST /SAIL NULL(RR-2L5000S)

T

V

W

(TENEX only) Load with DDT, exit to
DDT.

Always put loader link blocks and the
characters for constant strings into
the low segment, even if /H is
selected. This is intended for use in
overlay systems where c o d e i s
overlaid but data is not.

Generate additional suppressed DDT
symbols. These symbols are
designed to serve as comments to a
programmer or processor rummaging
though the generated code. Symbols
generated by this switch all begin
wi th a percent s ign (‘XI, a n d m a n y
come in pairs. A X8 symbol points to
the f i rs t word of an area and a %.
s y m b o l p o i n t s t o t h e f i r s t w o r d
beyond the area. Thus the length of
an area is the difference of its X. and
%S symbols. The symbols are:

The switch information contained in
parentheses will be sent unchanged to Sail.
Note the convent ion which a l lows one set
of parentheses enclosing a myriad of switches
to replace a “/I’ character inserted before each
one. This string tells the compiler to compile
NULL using parse and semantic stacks four
times larger than usual (RR). A listing file is
to be made which assumes that RAID will be
loaded and NULL wi l l be loaded r ight a f ter
R A I D (-2L). H i s p r o g r a m i s b i g e n o u g h t o
n e e d 5 0 0 0 w o r d s o f S t r i n g s p a c e (5 0 0 0 9 .
The statement REQUIRE “chars”
COMPILER-SWITCHES; can be used to change
the settings of the compiler switches. “chars”
must be a string constant which is a legitimate
switch string, containing none of the characters
“(/)“; e.g.,

REQUIRE “20F” COMPILER-SWITCHES;

The string of characters is merely pasSed to
the switch processor, and it may be possible to
cause all sorts of problems depending on the
switches you try to modify. Switches A, B, and
F are the only ones usual ly modi f ied . The
switches which set stack sites (D, P, Q, R) or
string space (S) should be avoided. Switches
which control the format of files (B, F) should
only be used if you have such a file open.

ZSADCN
ZSLIT
PSRLIT .
7fSCOD
ZSSTRC
ZSVARS
ZALSTO
ZSARRV

IISFORE
ZSSUCC

Z.ADCN
ZLIT
X.RLIT
Z.SCOD
ZSSTRC
X.VARS

rddross constants
litorals
referenco lilerrls
START(or QUICK),CODE
string variables
simple vrriablos
start to clear registers
first data word of a fixed array

FOREACH satisfier block .
SUCCEED/FAIL roturn block

/W tends to increase the number of
DDT symbols by a factor of 2 or 3.

22.5 Loading Sail Programs

L o a d t h e m a i n p r o g r a m , any separately
compiled procedure fi les (see page 12), any
assembly language (see page 13) or Fortran
procedures, and DDT or RAID if desired. This is
all automatic if you use the LOAD or DEBUG or
EXECUTE system commands (see [MonCom 3).
A n y o f t h e S a i l e x e c u t i o n t i m e r o u t i n e s
requested by your program will be searched
out and loaded automatically from
SYS:LIBSAn.REL (<SAIL>LIBSAn on TENEX). If

I-36

SAIL - USING SAIL

the shared segment is available and desired,
type SYS:SAILOW (SYS:LOWTSA for TENEX) a s
as your very first LOADER command (before /D
even). SUAI people can abbreviate SYS:SAILOW
as /Y. All this is done automatically by SNAIL at
SUAI. Other loaders (e.g., LINKlO) can also be
used.

22.6’ Starting Sail Programs

For most applications, Sail programs can by
started using the START, RUN, EXECUTE, or TRY
system commands, or by using the SG command
of DDT (RAID). The Sail storage areas will be
initialized. This means that all knowledge of l/O
activity, associative data structures, strings, etc.
from any previous activation of the program
will be lost. All strings (except constants) will
be cleared to NULL. All compiled-in arrays will
n o t b e r e i n i t i a l i z e d (PRELOADed a r r a y s a r e
preloaded at compile time - OWN arrays are
never initialized). Then execution will begin
with the first statement in the outer block of
your main program. As each block is entered,
its arrays will be cleared as they are allocated.
Variables are not cleared. The program will
exit when it leaves this outer block.

STARTING THE PROGRAM IN “RPG” MODE
Sail programs may be started at one of two
consecutive locations: at the address contained
in the cell JOBSA in the job data area, or at the
address just following that one. The global
variable RPGSW is set to 0 in the former case,
-1 in the latter. Aside from this, there is no
difference between the two methods. This cell
may be examined by declaring RPGSW as a n
EXTERNAL INTEGER.

22.7 Storage Reallocation with REEnter

The I compiler dynamically allocates working
storage for its push down lists, symbol tables,
string spaces, etc. It normally runs with a
standard allocation adequate for most programs.
Switch settings given above may be used to
change these allocations. If desired, these
allocations may also be changed by typing TC,
followed by REE (reenter). The- compiler will
ask you if you w a n t to allocate. Type Y to
allocate, N to use the standard allocation, and
any other character to use the standard

allocations and print out what they are. All
entries will be prompted. Numbers should be
d e c i m a l . T y p i n g alt-mode instead of CR will
cause standard allocation to be used for the
remaining values. The compiler will then start,
awaiting command input from the teletype.

F o r SUAI “ G l o b a l M o d e l ” u s e r s , t h e R E E
c o m m a n d w i l l a l s o d e l e t e a n y REQUlREd o r
previously typed segment name information.
The initialization sequence will then ask for new
names.

137

2LOU-GCING SAIL PROGRAMS SAIL

i

SECTION 23

DEBUGGING SAIL PROGRAMS

23.1 Error Messages

It the compiler detects a syntax or semantic
t;‘r ror while compiling a program it will provide
t ‘IC user with the following information:

;) T h e e r r o r m e s s a g e . These are
English phrases or sentences which
attempt to diagnose the problem. If
a. message is vague it is because no
specific test for the error has been
made and a catchall routine detected
it. If the message begins with the
w o r d “DRYROT” it means that tshere
is a bug in the compiler which some
strangeness in your program was
a b l e t o t i c k l e . S e e a s y s t e m
programmer about this.

2) The current input l ine . Page and
line number, along with the text of
the line being scanned, are typed.
A line feed will occur at the point in
t h e l i n e j u s t fo l lowing the last
program e lement scanned. The
absence of a posi t ion ind icator
rrieans that a macro (DEFINE) body is
being expanded.

3) A question mark (?) or arrow (t).

kspona to the prompt in any of the following
ways:

<cr> Try t o c o n t i n u e c o m p i l a t i o n . A
message wi l l be pr inted and the
sequence reentered if recovery is
i m p o s s i b l e (i f a ‘I?” w a s t y p e d
instead of an arrow).

<If-> Try to continue the compilation, but
don’t stop for user response after
future e r r o r s . I . e . , automatic
cant inuat ion. Messages will fly by
(a t a n u n r e a d a b l e r a t e o n DPYs)
until the compilation is complete or
a n e r r o r o c c u r s f r o m w h i c h n o
recovery is possible. In the latter
c a s e t h e q u e s t i o n s e q u e n c e i s
reentered.

138

A same as <If>

I B Enter BAIL if it is loaded.

C same as <cr>

D Enter DDT or RAID if one is loaded.
Otherwise, type “No DDT” and re-

I

question. Do not type D if you
really mean B.

E Edit. This command must be
followed by a carriage return, or a
space, a f i l e n a m e (i n s t a n d a r d
format, assumes DSK) and a carriage
return. If the fi lename is missing,
the SOS edi tor (see [Savitzky]) is
started, given instructions to ed i t
the current source file and to move
the editing pointer to the current
page and line number. If a file name
is present, that file is edited starting
a t t h e b e g i n n i n g . T h i s feature IS
ava i lab le outs ide SUAI only if the
S O S e d i t o r i s a v a i l a b l e , a n d i s
modified to read a standard CCL file
for its input. If you change your
mind and do not wish to edit, typing
an altmode will get you back to the
question loop.

s Restar t . Somet imes useful i f you
are debugging the compiler (or if
you were compiling the wrong file).
The program is restarted, accepting
compilation commands from the TTY.

T TV edit. Same as E except that E is
used at SUAI, TVEDIT at IMSSS and
SUMEX.

X Exi t . A l l f i les are c losed in thei r
current state. The program exits to
the system.

A n y o t h e r c h a r a c t e r w i l l c a u s e t h e e r r o r
routines to spew forth a summary of this table
and re-enter the question sequence.

ERROR MODES
1 For errors which occur during compilation, the

above procedure can be modified slightly by
setting various modes. One sets a mode by
including the appropr ia te le t ter before the
response. Any of the four modes may be reset
by including a minus sign (-) before them. E.g.

S A I L -

“-0”. Error modes can also be set with REQUIRE
<string,const> ERROR-MODES. W h e n t h e
compiler sees this it reads through the string
constant and sets the modes as it sees their
letters. These modes remain in effect until the
end of the compilation or until reset with a
response to an er ror message, or another
require error-modes.

The available modes are:

K K E E P t y p e - a h e a d . The error
handler flushes all typeahead except
a LF (l inefeed) . I f KEEP mode is
ever implemented then the input
buffer will not be flushed.

L LOGGING. T h e f i r s t a n d s e c o n d
items of the error message will be
sent to a file named <prognam>.LOG
where <prognam> is the name of the
f i le of the main program. I f y o u
would rather have another name,
use F<file speci f icat ion>, where
<file specification> must be a legal
f i l e n a m e a n d P P N . T h e d e f a u l t
e x t e n s i o n i s .LOG and the defau l t .
PPN is that of the job. The .LOG file
(or whatever it’s called) is closed
when one’s program finishes
compilation, or the compilation is
terminated with the S, X, E, or T
responses.

N NUMBERS. This mode causes the
message “Cal led f rom xxxx Last
S A I L c a l l a t y y y y ” t o b e t y p e d
before the question mark or arrow.
Useful to compiler debuggers a n d
hand coders.

Q Q U I E T . I f t h e e r r o r i s c o n t i n u a b l e ,
none of the above wi l l be typed.
Hawever, you will always be notified
of a non-continuable error.

Note that setting a mode does nothing but set a
mode; it does not cause continuation.

STOPPING RUNAWAY COMPILATIONS
Typing [ESC] I at SUAI or control-H .on T E N E X
will immediately cause the Q and A modes to be
reset so thai the next error will (a) be typed,
a n d (b) w a i t f o r a r e s p o n s e r a t h e r t h a n
continuing automatically.

DEBUGGING SAIL PROGRAMS

EXECUTION TIME ERROR MESSAGES
Error messages have nearly the same format as
t h o s e f r o m t h e c o m p i l e r (p a g e 1 3 8) . T h e y
indicate that

1) an array subscript has overflowed;

2) a case index is out of range;

3) a stack has overflowed while
a l locat ing space for a r e c u r s i v e
procedure; or

4) one of the execution time routines
has detected an error.

In Numbers mode, the “Called from” address
identifies, in the first 3 cases, the location in
the user program where the error occurred ;
the “Last SAIL ca l l 1 a t” address g ives the
location of the faulty call on the Sail routine for
type 4 messages.

All the replies to error messages described in
page 138 are valid. If no file name is typed
with the “E” or “T” option, the editor re-opens
the last file mentioned in the EDIT system
command.

The function USERERR may be used to activate
the Sail error message mechanism. Facilit ies
are provided for changing the mode. See page
49 for details.

USER ERROR PROCEDURES
A user error procedure is a u s e r p r o c e d u r e
that is run before or instead of the Sail error
handler every time an error occurs at
runtime. T h i s i n c l u d e s a l l a r r a y e r r o r s , I O
e r r o r s , L e a p i s h e r r o r s a n d a l l USERERRs. It
does not include system errors, such as III Mem
Ref or Ill UUO.

T h e p r o c e d u r e o n e u s e s f o r a u s e r e r r o r
procedure must be of the following type:

SIMPLE INTEGER PROCEDURE proc
(INTEGER lot; STRING msg, rrp);

Only the names proc, Ioc, msg, and rsp may
vary f rom the example above, except that
one may declare the procedure INTERNAL if
one wishes to use it across files.

W h e n e v e r t h e e x t e r n a l i n t e g e r -ERRP- i s
loaded with LOCATION (proc), the error handler

139

DEBUGGING SAIL PROGRAMS SAIL

will call proc before it does anything else. It
will set lot to the core location of the call to
the error handler . Msg wi l l be the message
that it would have printed. Rsp will be non-
NULL only i f the error was f rom a USERERR
which had response string argument. Proc can
do anything that a simple procedure can do.
W h e n i t e x i t s , i t s h o u l d r e t u r n a n i n t e g e r
which tells the error handler if it should do
anything more. If the integer is 0, the error
h a n d l e r w i l l (1) p r i n t t h e message, (2) pr int
the location, and (3) query the tty and dispatch
on the response character (i.e., ask for a <cr>,
<If>, e tc .) . I f the r ight hal f of the integer is
non-zero, it is taken as the ascii for a character
to dispatch upon. The left half may have two
bits to control printing. If bit 17 in the integer
is on, message printing is inhibited. If bit 16 is
on, then the location printing is inhibited. For
example, “X”+(l LSH 18) will cause the location
to be printed and the program exited. “C”+(3
LSH 18) will cause the error handler to continue
without printing anything.

23.2 Debugging

Sail has a high-level debugger called BAIL; see
the descr ipt ion beginning in the next
subsection. This subsection gives necessary
information for those who wish to use DDT or
RAID. The code output for Sail programs is
designed to be fairly easy to understand when
examined using the DDT debugging language or
SUAl’s d i s p l a y o r i e n t e d R A I D p r o g r a m . A
knowledge of the debugger you have chosen is
required before this section will be
comprehensible.

SYMBOLS
Only those symbols which have been declared
INTERNAL (see page 12) and those declared in
the_ currently open “program” are available at a
given time. The name of a Sail program as far
a s D D T o r R A I D (h e n c e f o r t h D D R A I D) i s
concerned is the name of the outer block of
that program. If no name is given for this
block, the name M. will be the default.

Note that s imple procedures can not do a
non- loca l GOTO. H o w e v e r , t h e e f f e c t o f a
non- loca l GOT0 can be achieved in a user
error procedure by loading the external integer
-E-RRJ, with the LOCATION of a label. The label
should be a on a call to a non-simple procedure
w h i c h d o e s t h e d e s i r e d GOTO. T h e e r r o r
handler c lears ,ERRJ, b e f o r e c a l l i n g t h e
p r o c e d u r e i n -ERRP, If ,ERRJ, i s n o n - z e r o
w h e n t h e u s e r p r o c e d u r e r e t u r n s , a n d
continuing was speci f ied , t h e n t h e e r r o r
handler’s exit consists of a simple transfer to
that location. Note that for this simple transfer
to work properly, the place where the error
occurred (or the call to USERERR) must be in
the same sta t ic (lex ica l) scope as the labe l
whose LOCATION is in ,ERRJ, If this is really
important to you, see a Sail hacker.

WARNING! Handling errors from strange places
l i k e t h e s t r i n g garbage collector and the core
m a n a g e m e n t r o u t i n e s w i l l g e t you into deep
trouble.

Only the first six non-blank characters of a
block name or identifier will be used in forming
a DDRAID symbol. If two identifiers in the same
block have the same first six characters the
program using them will not get confused, but
the user might when t ry ing to locate these
identifiers.

BLOCKS
A l l b l o c k n a m e s a n d i d e n t i f i e r s u s e d a s
variables, procedures or labels in a given (main
or separate procedure) program are available
f o r typeout w h e n t h a t p r o g r a m i s “ o p e n ”
(NAMES: has been typed). TO refer to a symbol,
type BLOCK-NAME&SYMBOL/ (substitute ; for /
in RAID). The block name may be omitted if you
have “opened” the block with BLOCK-NAMES&.
The symbol table is block-structured only to
the extent that block names have appeared in
t h e s o u r c e p r o g r a m . F o r i n s t a n c e , i n t h e
program

BEGIN "NAME 1”
INTEGER 1, J;
. . .
BEGIN

INTEGER I, K;
. . .

END;
. . .

END "NAMEI"

140

SAIL . DEBUGGING SAIL PROGRAMS

the symbols J , K , and both symbols I are
considered by DDRAID to belong in the same
block. Therefore confusion can result, with
respect to I. This approach was taken to avoid
the necessity of generating meaningless block
names for DDRAID when none were given in the
source program. A compound statement will be
considered by DDRAID to be a block if it has a
name.

SAIL GENERATED SYMBOLS
Some extra symbols are generated by Sail and
will show up when you are using DDRAID. They
are:

ACS The accumulators P (system push
, down list pointer), and SP (string

push down pointer) are g iven
symbolic names. Currently P-.17,
SP- ‘16.

OPS The op codes for the UUOs FIX,
FLOAT, and ARERR (subscr ipt
o v e r f l o w UUC) are included to
make these easy to detect in the
code.

ARRAYS For each array declared in the
outer block (built-in arrays), the
fixed address of its first element
is given a symbol ic name. This
name is constructed f rom the
characters of the array name (up
to the first 5) followed by a
period. For instance, the first
element of array CHT is CHT.; the
first element of PDQARR is
PPQAR.; The last semicolon w a s
r e a l l y a p e r i o d . This dotted
symbol points to the second word
of the first descriptor for String
A r r a y s (s e e p a g e 1 5 8 , p a g e
157).

STRINGS For each string declared in the

INSTR. : <first word>
INSTRI : <second word>

More about string descriptors on
page 158.

B L O C K S T h e f i r s t w o r d o f t h e f i r s t
executable statement of every
b l o c k o r c o m p o u n d s t a t e m e n t
which has been given a name is
given a label created in the same
way as those for ar rays above.
This label cannot be gone to in
the source program. It causes no
program inefficiency. This label
p o i n t s a t the f i rst word of the
compound tail - - n o t t h e f i r s t
word of code generated for the
b lock (sk ips any procedure or
array declaration code).

START The first word of code generated
for any given program is given
the name “S.“.

PROCEDURES The word at
entry address -1 of

INTERNAL procedure contains tze”
a d d r e s s o f the procedure
descriptor. (This enables APPLY
of an EXTERNAL procedure to
w o r k .) T h e f i r s t w o r d o f t h e
procedure descriptor is given a
name consist ing of the f i rs t 5
characters o f t h e p r o c e d u r e
name, followed by a dollar sign
w.

WARNINGS
Since only the first 6 characters of an identifier
are available, it is wise to declare symbols
which will be examined by DDRAID in such a
w a y that these s ix characters wi l l uniquely
identify them.

outer block (built-in strings), the
s e c o n d w o r d o f t h e t w o w o r d
str ing descr iptor is g iven the
n a m e o f t h e Strihg v a r i a b l e ,
truncated to six letters. The first
word of the string descriptor is
given a name consisting of the
first five letters of the string’s
name followed by a period. For
example, if you declare a string
I N S T R I N G , t h e n t h e t w o w o r d
descriptor:

2 3 . 3 BAIL

BAIL [Reiser] is a high-level breakpoint package
for use wi th Sai l programs. Communicat ion
b e t w e e n t h e p r o g r a m m e r a n d B A I L i s i n
character strings which are the names and
values of Sail objects. BAIL reads genera l
Sa i l express ions typed by the programmer ,

141

DEBUGGING SAIL PROGRAMS

evaluates them in the context of the place in
the program where execution was suspended,
and p r i n t s t h e resulting value in an
appropriate format. The evaluation and
p r i n t i n g a r e p e r f o r m e d j u s t a s if the
programmer had inserted an extra statement
into the original program at the point where
execution was suspended. BAIL also provides
a way to talk about the program, to
answer the questions “Where was execution.
suspended?“, “By what chain of procedure
calls did execution proceed to that point?“, and
“What is the text of the program?”

In ord,er to perform these functions, BAIL must
have some in format ion about the program
being 1 debugged . T h e S a i l c o m p i l e r w i l l
p r o d u c e t h i s i n f o r m a t i o n o n a f i l e w i t h
extension .SMl if the program is compiled with
an appropriate value supplied for the /B switch.
T h e .SMl in format ion consis ts of the name,
t y p e , a n d accessing information for each
var iable and procedure , the locat ion of the
beginning and end of each statement, and a
description of the block structure.

The code for BAIL itself is loaded automatically
when the program is loaded. In order for the
added information and code to be of any use,
it must be possible to give control to BAIL at
the appropriate time. An explicit call to BAIL
is possible by declaring EXTERNAL PROCEDURE

BAIL; in the program and using the procedure
call BAIL;. This works well if it , can be
predicted in advance where BAILing might be
helpful. Runtime er rors , such as subscr ip t
overf low or CASE index errors , are not as
predictable; but responding “B” to the Sail
error handier will activate BAIL. Interrupting
the program while it is running (to investigate
a possible infinite loop, for example) can be
achieved under the TENEX operating system b y
typing control-B. On a DEC TOPS-10 operating
system, first return to monitor mode by typing
one or more control-C’s, then activate BAIL by
typing DD<cr>.

BAIL performs some initialization the first time
it is- e n t e r e d . The in format ion in the .SMl
file(s) is collected and processed into a .BAl
file. This n e w f i l e r e f l e c t s all of the
information - f r o m t h e .SMl files of any
separately-compiled programs, and the
re locat ion per formed by the loader . I f the
c o r e i m a g e w a s SAVEd o r SSAVEd t h e n i n
subsequent runs BAIL will use the .BAI file and
bypass much of the initialization.

142

SAIL

BAIL prompts the programmer for input by
typ ing a number and a c o l o n . T h e n u m b e r
i n d i c a t e s h o w m a n y t i m e s B A I L h a s b e e n
entered but not yet exited, and thus is the
recursion depth inside BAIL. Input to BAIL can
be edited using the standard Sail input-editing
characters for the particular operating system
under which the program is running. [BAI!
requests input v ia INCHWL on DEC TOPS-10
systems and v ia INTTY on TENEX systems.]
I n p u t i s t e r m i n a t e d w h e n e v e r t h e e d i t o r
activates, string quotat ion marks balance,
a n d t h e l a s t c h a r a c t e r is a semicolon;
otherwise input l ines are concatenated into
one string before being processed further.

The programmer may ask BAIL to evaluate
any Sail expression or procedure call whose
evaluation would be legal at the point at which
execution of, the program being debugged was
suspended (except that expressions involving
AND, OR, IF-THEN-ELSE, and CASE are not
allowed.) BAIL evaluates the expression, prints
the resulting value in an appropriate format,
and requests further input.

Declared inside BAIL are several procedures
whose values or side effects are useful in the
debugging process. These procedures handle
the inser t ion and de le t ion of breakpoints ,
display the static and dynamic scope of the
current breakpoint, display selected statements
from the source program, a l low escape to
a n assembly- language debugging program,
and cause r e s u m p t i o n o f t h e s u s p e n d e d
main program.

COMPILE-TIME ACTION
The principal result of activating BAIL at
compile-time is the generation of a file of
information about the source program for use
by the run-time interpreter. This file has t h e
same name as the .REL file produced by the
compilation, except that the extension is .SMl.
I f requested, BAIL wi l l a lso generate some
addi t ional code for S IMPLE procedures to
make them more palatable to the run- t ime
interpreter.

The action of BAIL at compile time is governed
by the value of the /B switch passed to the
compiler. If the value of this switch is zero
(the defaul t i f no va lue is speci f ied) then
BAIL is completely inactive. Otherwise, the
low-order b i ts determine the act ions which
BAIL performs. [The value of the /B
switch is interpreted as octal.]

S A I L -

bit action if on

1 T h e .SMl file will contain the program
counter to source/listing text directory.

2

4

‘10

‘ 2 0

The .SMl file wi l l conta in symbol
information for all Sail symbols
encountered in the source. If this bit is
of f , then in format ion is kept only for
procedures, parameters , b locks, and
internals; i.e., non-internal local
variables are not recorded.

SIMPLE procedures will get procedure
descriptors, and one additional instruction
(a JFCL 0) is inserted at the beginning
of, S IMPLE procedures. E x c e p t f o r
these two changes, a l l proper t ies of
SIMPLE procedures remain the same a s
before. The procedure descr iptor is
n e c e s s a r y i f t h e p r o c e d u r e i s t o b e
called interpretively or if the procedure
is to be TRACEd.

BAIL will not be automatically loaded
and initialized, although all other actions
requested are p e r f o r m e d . This is
primarily intended to make it easier to
debug new versions of BAIL
without interfering with SYS:BAIL.REL.
By using this switch the decision to load
BAIL is delayed until load time.

A r e q u e s t t o l o a d SYS:BAIPDn.REL i s
generated. This file contains requests to
load procedure descriptors for most of
the predeclared runtime routines, ma.king
it possible to call them from BAIL. The
procedure descriptors and their
symbols occupy about 12P. Subsets of
t h e s e p r o c e d u r e d e s c r i p t o r s c a n b e
loaded individually to reduce memory
space requirements, at the cost of not
being able to ta lk about the rout ines
omitted. The s u b s e t s a r e BAICLC
(containing SQRT, EXP, LOG, SIN, COS,
R A N , C V O S , C V S T R , C V X S T R) , BAllOl
(major input/output and string
procedures), BAll02 (minor
input /output a n d string procedures),
BAlMSC (terminal functions and
miscellaneous), a n d BAIPRC (p r o c e s s
and interrupt rout ines) . To use these
subsets, request’ them explicitly (e.g.,
REQUIRE “SYS:BAICLC” LOAD,MODULE;
or on TENEX, “<SAJL>BAICLC”) and leave
the./208 bit off.

DEBUGGING SAIL PROGRAMS

The B switch must occur on the binary term,
not the listing or source term. Thus:

.R SAIL

.PROG,27BcPR;i
.COM PROG(27B,)

The program counter to source/listing index is
kept in terms of coordinates. The coordinate
counter is zeroed at the beginning of the
compilation and is incremented by one for each
BEGIN, ELSE, and semicolon seen by the parser,
provided at least one word of code has been
compiled since the previous coordinate was
def ined. Note that COMMENTS are seen only
by the scanner, n o t t h e p a r s e r , a n d t h a t
DEFINES and many declarations merely define
symbols and do not cause instructions to be
generated. For each coordinate the
directory contains the coordinate number,’ the
v a l u e o f t h e p r o g r a m c o u n t e r , a n d a f i l e
p o i n t e r t o t h e appropr ia te p lace . The
appropriate place is the source fi le unless a
listing fi le is being produced and the CREF
switch is off, in which case it is the listing
f i le . [The’ l is t ing f i le produced for CREF is
nearly unreadable.] On a non-CREF listing, the
program counter is replaced by the coordinate
number if bit 1 of the /B switch is on.

The symbol table information consists of the
block structure and the name, access
information, and type for each symbol.

If a BEGIN-END pair has declarations (i.e., is a
true block and not just a compound statement)
b u t d o e s n o t h a v e a n a m e , t h e n B A I L w i l l
invent one. The name is of the form Bnnnn
where nnnn is the decimal value of the current
coordinate.

RUN-TIME ACTION
The BAIL run-time interpreter is itself a Sail
program which res ides on the system disk
area. This p r o g r a m i s usual ly loaded
automatically, and does some in i t ia l izat ion
when entered for the first time. The
initialization g e n e r a t e s a .BAI file of
information collected from t h e .SMl f i l e s
produced by separate compilations (if any).
T h e .SMl f i les correspond to .REL f i les, and
the .BAl f i le corresponds to the .DMP or .SAV
file. Like RPG or CCL, BAIL will try to bypass
much of the initialization and use an existing
.BAI f i le i f appropr iate . Dur ing in i t ia l izat ion
BAIL d isp lays the names of the .SMl files it
i s p r o c e s s i n g . F o r e a c h .SMl f i l e w h i c h

143

DEBUGGING- SAIL PROGRAMS SAIL

cant ains program counter/text index
information, BAIL displays the names of the
text files and determines whether the text files
are accessible.

The in terpreter is activated by explicit call,
previously inserted breakpoints, or the Sail
er ror handler. For an expl ic i t cal l , say
EXTERNAL PROCEDURE BAIL; . . . BAIL;. From
the error handler , respond B. Breakpoints
will be described later in this section.

DEBUGGING REQUESTS
W h e n e n t e r e d , B A I L p r i n t s t h e d e b u g g i n g
recursion level followed by a colon, and awaits
a debugging request. BAIL accepts ALGOL and
LEAP expressions of the Sail language. The
following exceptions s h o u l d b e noted.
Expressions involving control structure are not
allowed, hence BAIL will not recognize AND,
OR, IF-THEN-ELSE, or CASE. Bracketed triple
i tems are not a l lowed. The TO and FOR
substring a n d sublist operators have been
e x t e n d e d t o o p e r a t e a s a r r a y subscript
ranges, FOR PRINT-OUT ONLY. If FOO is an
array, t h e n FOO[3 TO 71; will act like FOO[3],
FOO[4], FOO[S], F00[6], FOO[71; but is easier to
type. This extension is for pr in t -out only ;
ng g e n e r a l A P L s y n t a x o r s e m a n t i c s a r e
provided.

BAIL evaluates symbolic names according to the
s c o p e r u l e s o f A L G O L , e x t e n d e d t o a l w a y s

recognize names which are globally unique and
h a v e a f i x e d m e m o r y l o c a t i o n (e v e r y t h i n g
except parameters and recursive locals). For
any activation of BAIL, the initial scope is the
ALGOL scope of the statement from which BAIL
was act ivated. The procedure SETLEX (see
below) may be used to change the scope to
that of any one of the links in the dynamic
activation chain. See also the section below on
BLOCK STRUCTURE for a way to evade the
scope rules.

Severa l procedures are predeclared in the
outermost b lock to handle breakpoints and
display information. These are descr ibed
individually below.

ARGS

“STR” + ARGS

The arguments to the procedure which was
most recently called.

BREAK

BREAK (“LOCATION”, “CONDITION”(NULL),
“ACTION”(NULL), COUNT(O))

A breakpoint is inserted. The syntax for the
first argument is

<location>
::- <label>
::= <procedure>
::= <block name>
::- *<nnnn>
::- <block name> . <location>

<nnnfS
::= <decimal coordinate number>

I f t h e l o c a t i o n i s s p e c i f i e d b y t h e < b l o c k
name>.<location> construct then the blocks of
the core image are searched in ascending order
o f a d d r e s s o f BEGINS unt i l the f i rst <block
name> is matched. The search continues until
the second <block name> is matched, etc. The
breakpoint is inserted at the label, procedure,
or coordinate declared within the scope of the
last <block name>. This detailed specification is
not usually necessary. The action taken at a
breakpoint is

IF LENGTH (CONDITION) AND EVAL (CONDITION)
AND (COUNT c COUNT- 1 I<0 AND LENGTH(ACTION)

THEN EVAL(ACTIONh
EVAL(TTY)

COORD

NUMBER + COORD (“LOCATION”)

Returns the coordinate number of the location
given as its argument. LOCATION has the same
syntax as in BREAK.

1 4 4

SAIL DEBUGGING SAIL PROGRAMS

DOT

DOT

This procedure transfers control to an assembly
l a n g u a g e d e b u g g i n g p r o g r a m (i f o n e w a s
loaded).

DEFINE

DEFINE (CHAR, “MACRO”)

M a c r o s f r o m t h e s o u r c e f i l e (s) , a r e n o t
recognized at the present time. There are 26
characte,r macros definable, from “A” to “2”.
DEFINE macros substitute the given ‘string for
each occurrence o f <alt><char> which is not
par t of a s t r ing constant . I f the operat ing
system can send characters of more than 7 bits
t o INCHWL (I N T T Y u n d e r T E N E X) t h e n a n y
activation character with high order bits will
a lso act ivate the macro . Thus a t SUAI <alt>P,
OCP, and o@P are all equivalent. In all cases the
character is converted to upper case before
doing anything else. The macros G, P, S, and X
are predef ined to be ” !!GO;“, ” !!GO,“, ” !!STEP;“,
and ” !!GSTEP;” respectively.

HELP

A list of options, including short descriptions of
the procedures described in this section, is
printed. An input consisting of a question mark
followed by a carriage return is interpreted as
a call to HELP.

SETLEX

SETLEX (LEVEL)

Evaluating SETLEX(n) changes the static (lexical)
scope to the scope of the n-th entry in the
dynamic scope list. SETLEX(0) is the scope of

t h e breakpo_int; SETLEX(1) i s t h e s c o p e o f
the most recent procedure call in the
dynamic scope, etc.

SHOW

“STR” + SHOW (FIRST, LAST(O))

The text of the program from the source or
listing file. If last is less than first then set last
to last+first. Return coordinates first through
last. SHOW (5, 3) gives coordinates 5, 6, 7, and
8; SHOW (5, 7) gives coordinates 5, 6, and 7;
SHOW (5) gives coordinate 5 only.

A p l u s s i g n (‘I+“) f o l l o w i n g t h e c o o r d i n a t e
n u m b e r i n d i c a t e s t h a t t h e v a l u e s o f some
variables have been carried over in
accumulators from the previous coordinate.
Changing the value of variables might not be
successful in such a case, because BAIL will not
change any accumulator value directly. The
MEMORY construct can be used to modify any
location in a core image, including the
accumulators.

TEXT

“STR” t TEXT

The current static and dynamic scopes, with
text from the source or listing file.

TRACE

TRACE (“PROCEDURE”)

S p e c i a l b r e a k p o i n t s a r e i n s e r t e d a t t h e
beginning and end of the procedure named. On
entry, the procedure name and arguments are
typed. On exit, the name and value returned (if
any) are typed.

TRAPS

“STR” t TRAPS

A list of the current breakpoints and traces.

145

DEBUGGING SAIL PROGRAMS SAIL

UNBREAK GOGTAB

UNBREAK (“LOCATION”) EXTERNAL INTEGER ARRAY GOGTAB[O:n]

The breakpoint a t the locat ion speci f ied is
removed.

UNTRACE

UNTRACE (“PROCEDURE”)

T h e b r e a k p o i n t s i n s e r t e d b y T R A C E a r e
removed.

!!GO

!!GO

An immediate exit from the current instantiation.
of BAIL is taken and execution of the program
is resumed. !!GO is a reserved word (the only
one) in BAIL.

!!GSTEP

!!GSTEP

Temporary breakpoints are inserted at all of
the logical exits of the current statement, and
execution of the program is resumed. Logical
exits are the next statement and locations to
w h i c h t h e c u r r e n t s t a t e m e n t c a n j u m p ,
e x c l u d i n g a n y p r o c e d u r e c a l l s . A l l o f t h e
breakpoints which are inserted will be removed
as soon as one of them is encountered.

!!STEP

!!STEP

Temporary breakpoints are inser ted a t a l l
locations fo which the current statement can
jump, including procedure calls, and execution
of the program is resumed.

This array is the Sail user table, containing all
kinds of magical information. (The procedure
USERCON was formerly the only way to access
the user table.) If you are a hacker then pick up
a copy of SYS:GOGTAB.DEF (<SAIL>GOGTAB.DEF
on TENEX) and poke around. Do not change any
values unless you know what you are doing.

STRING TYPEOUT
Strings are usually typed so that the output
looks the same as the input, i.e., a string is
typed with surrounding quotation marks and
doubled internal quotation marks. For SHOW,
ARGS, and TEXT this would ordinarily create
confusion, SO they are handled specially. When
these procedures are evaluated they set a flag
which inhibits quotation mark fiddling, provided
that no further evaluation takes place before
the next typeout. Thus SHOW (5, 3); will be
typed plain, but STR + S H O W (5, 3); will have
quotation marks massaged.

BLOCK STRUCTURE
Var iables not in the current scope can be
referenced by using the same scheme used to
descr ibe locat ions to BREAK. I f you have
something of your own named SHOW then you
can access the BAIL SHOW function by using
SRUNSSHOW (coord);. W a r n i n g : t h i s m o d e
assumes that you know what you are doing.

BAtL and DDT
When BAIL is loaded by a non-TENEX system, it
sets .JBDDT to the address of one of its
routines. (If you load both BAIL and DOT then
the last module loaded wins.) Under TENEX,
BAIL sets .JBDDT at runtime, but only if it is
zero when BAIL looks. If BAIL is initialized in a
core image which does not have DDT or RAID
then things will be set up so that the monitor
c o m m a n d DOT gets you into BAIL in the right
way. That is, BAIL will be your DDT. To enter
BAIL from DDT (provided that the Sail
initialization sequence has a l r e a d y b e e n
performed), use

pushi P,<program countrr>SX
JRST BFlILSX

For example, if .JBOPC contains the program
counter,

146

S A I L -

PUSH P, . JBOPCSX
JRST BRILSX

The entry B. provides a path from DDT to BAIL
which works whether or not the core image has

been initialized. One use of this feature is to
BREAK a procedure in an existing production
program without recompiling. For example,

@;. PROG compiled, loaded with BAIL rnd DDT, and SSAVEd
@GET PROG
eDD

B.$G
BAIL initialization

1 :BREAK(“procoduro”);
I:!! GO;

SETSCOPE

DEBUGGING SAIL PROGRAMS

y o u w a n t t o g e t b a c k t o w h e r e y o u w e r e
before the procedure was called. Then !!UP will
do the trick if the value of level is correct.

!IQUERY
(Declare as EXTERNAL STRING !!QUERY in your
program.) Whenever BAIL wants input, it checks
this string first. If it is not NULL then !!QUERY
is used instead of asking the operating system
for input from the terminal. (!!QUERY is set to
NULL each time this is done.) Thus a program
can simulate the effect of typing to its own
input buffer by stuffing the text into !!QUERY.
In particular, fi le input to BAIL and various
macro hacks can be effected by using
procedures which assign values to !!QUERY.

To enter DDT from BAIL, simply say DDT;. For
operation under TENEX, control-B is a pseudo-
interrupt character which gets you into BAIL.

WARNINGS
Since BAIL is itself a Sail procedure, entering
BAIL from the error handler or DDT after a
push-down over f low or a string garbage
collection error will get you into trouble.

SIMPLE procedures cause headaches for BAIL
. because they do not keep a d isp lay pointer .

BAIL tries to do the right thing, but
occasionally it gets lost. BAIL will try to warn
you if it c a n . In general, looking at value string
parameters of SIMPLE procedures does not
work.

(For wizards only.) The return address is set to
!!COTO (“LOCATION”)

the location specified, and then a !!GO is done .
Note that the location should be in the same
lexical scope as the most recent entry to BAIL,
or tfie program will probably get confused.

I!UP (LEVEL)
(For wizards only.) This procedure trims the
runtime stack back to LEVEL, then reenters
BAIL. C L E A N U PS a n d d e a l l o c a t i o n s ’ a r e
performed for the procedures thus killed. Level
L-5 ‘5 same interpretation as in SETLEX, and
i n a d d i t i o n m u s t n o t d e s i g n a t e a S I M P L E
procedure. Suppose you ask BAIL to evaluate a
procedure call, the procedure hits an error, and

SETSCOPE (ITEMVAR PITEM)

If you have processes then SETSCOPE can be
used to peek around the world. Specifically,
the static and dynamic scopes are set to those
of the process for which PITEM is the process
item, This will allow access to variables and
t r a c e b a c k f r o m T E X T , b u t c a r e m u s t b e
exercised when calling procedures. A call to a
procedure which is not defined at the top level
will probably not work. Also, if the procedure
does not return successfully then your stacks
will be hopelessly confused.

Note on processes: BAIL runs in the process
which caused the break. Thus stack space must
be provided in each process. The minimum
amount is PSTACK(4>+STRlNGSTACK(2).

At compile time one channel, a small amount of
RESOURCES USED

additional memory, a n d a p p r o x i m a t e l y 0 . 3
seconds of KAlO CPU time per page are used.
BAIL uses two channels at runtime and a third
during initialization. T h e s e c h a n n e l s a r e
o b t a i n e d w i t h G E T C H A N . I f t h e d e b u g g i n g
recursion level exceeds 3 or 4 then it will be
necessary to increase the pushdown stacks
(particularly STRING,PDL) appropriately. BAIL
uses 7 of the privileged breaktables, obtaining
them with GETBREAK. BAIL occupies 19.5
pages. Symbols require 5 words each with an
additional 2 words for each block; one word for
each 128 coordinates is also required. The disk
space required for .SMl and .BAI files is

147

1, DEBUkGING-SAIL PROGRAMS

generally one half that required for the .REL
files.

EXAMPLE

@TYPE TEST 1 .SAI

, <REiSER>TEST I.SAI; 1 SAT 28-AUG-76 4:20PM PAGE 1

BEGIN “TEST”
EXTERNAL PROCEDURE BAIL;
INTEGER I, J, K; STRING A, B, C; REAL X, Y, 2;
INTEGER ARRAY FOO[O: 151; STRING ARRAY STRARR[:5, 2~63;

INTEGER PROCEDURE ADD (INTEGER I, J); BEGIN “ADD”
OUTSTR (”
HI. GLAD YOU STOPPEO BY.“); RETURN (l+J) END “ADD”;

FOR h-0 STEP 1 UNTIL 15 DO FOO[l]cl~l;
FOR It 1 STEP 1 UNTIL 5 00

FOR Jt2 STEP 1 UNTIL 6 DO STRARR[I, JJc64+8*kJ;
Its; Jc6; Kc 112; X+3.14 159265; YeO; 2~23.;
Ac”BIG DEAL”; Bt”QE0”; Cc”THE LAST PICASSO”;

BAIL; ADO (7, 45); USERERR (0, 1, “THIS IS A TEST”);
END “TEST”;
tL

cSAIL.SAV; 10
TENEX SAIL 8.1 &2&76 (? FOR HELP)

*TEST 1 ,c
*t/278

;‘ESTI.SA~I I
EN0 OF COMPILATK)N.
LOADING

LOADER 6+9K CORE
EXECUTION

EG
BAIL VER. 2&AUG-76
TEST 1 SM 12

TEST 1 .SAI; 1
End of BAIL initialization.

1:45, 7.089, “SOME RANDOM STRING”;
4 5 7.089000 “SOME RANDOM STRING”

1:‘275, TRUE, FALSE, NULL;
189 -I 0 “”

1 :J, X, 1~46;
6 3.141593 46

1 :I, I<J;
4 6 ‘.O

1:45*(89.4-53.06);
1635.300

1 :A00 c3, 4);

HI GLAD YOU STOPPED BY. 7
1 :FOO;

<ARRAY>[0: 15J
1 :FOO(4);

1 ::Tt?ARR[1 FOR 2,4 TO 61;
II nL “M-8 “N” “T” “,,” “,,”

1 :F00[35];

SUBSCRIPTING ERROR.
INDEX VALUE MIN MAX

1 35 0 15 : F00[35]

1 :BREAK (“ADD”);

1:ADD (3, 4);

2:ARGS;
3, 4

2:!!GO;

HI. GLAD YOU STOPPED BY. 7
1 :!!GO;

1 :TEXT;
LEXICAL SCOPE, TOP DOWN:
SRUN$
TEST
ADD

ROUTINE TEXT
ADD r4 INTEGER PROCEDURE ADO (INTEGER I, J);
T E S T a24 ADO (7, 45);

SAIL

AT SETLEX(Oh

1 :UNBREAK (“ADD”);

1 :!!GO;
HI. GLAD YOU STOPPED BY.
THIS IS A TEST
CALLEO FROM 642124 LAST SAIL CALL AT 400303
tB
1 :TEXT;

LEXICAL SCOPE, TOP DOWN:
tRUNS

DYNAMIC SCOPE, MOST RECENT FIRST:
ROUTINE TEXT
.SIMPLE. ‘642124 Za?? FILE NOT VIEWABLE
T E S T a 2 6 USERERR (0, I, “THIS IS A TEST”);

AT SETLEXtO);
1 :I;

UNKNOWN ID: I

1 :SETLEX (I h

LEXICAL SCOPE, TOP DOWN:
$RUNt
TEST

I :I;
64

1 :!!GO;

END OF SAIL EXECUTION.

148

SAJL- DEBUGGING SAIL PROGRAMS

CURRENT STATUS

The state of the world is determined by
the values of the accumulators and '
the value of the Sail variable -SKIP,

The run- t ime in terpreter recognizes only ’
the first 15 characters of identifier
names; the rest are discarded without
comment. The characters which are

legal in identifiers are
ABCDEFGHIJKL~NOPQRSTUVUXYZ
abcdofghijKlhnopqrttuvuxyr
0123456789!,apnxc~V3~~#S\l

Notable for its absence: period.

LOCATION of a procedure does not work.

PROPS is read-only.

Bracketed triple items are not allowed.

A procedure call containing the name of a
parametric procedure (functional
argument) is not handled properly.

Contexts are not recognized.

External linkage: I f a n i d e n t i f i e r i s n e v e r
rdferenced by code (i .e., h a s a n e m p t y fixup
c h a i n a t t h e t i m e fixups are p u t o u t t o t h e
loader) then that identifier is not defined by
Sail. Thus variables which are never used do
not take up space and a request to the
loader is not made for EXTERNALS which are
not referenced. This feature of Sail. As a
result, the following DOES NOT WORK unless
special precautions are taken:

BEGIN
EXTERNAL PROCEDURE BAIL;
EXTERNAL PROCEDURE

PLOT (REAL X0, YO, Xl, Yl);
REQUIRE “CALCOM” LIBRARY;

BAIL END

PLOT will not be defined by Sail, hence BAIL
will not know about it. However if there are
any references to PLOT (real or “dummy” calls)
then BAIL will know. The following trick can
also be used, assuming that CALCOM is a Sail-
compiled library: Compile CALCOM with /lOB,
;;!:ich s a y s - “ m a k e t h e .SMl f i l e b u t d o n ’ t
a u t o m a t i c a l l y l o a d SYS:BAIL.REL”. T h e n t h e
a b o v e w i l l w i n (d u e t o B A I L r e c o g n i z i n g

things which are globally unique) and programs
which do not use BAIL will not have it loaded
just because the library was used. This same
problem occurs with EXTERNAL RECORD-CLASS
declarations. Use of the field index
information does not cause a reference to the
class name but NEW-RECORD does. Thus the
s a m e /lOB trick must be used if there are no
NEW-RECORD calls.

BAIL and other language processors: If CALCOM
in the paragraph above was compiled by some
processor other than Sail (e.g. FAIL, MACRO,
BLISS, . ..) then further steps must be taken if
BAIL is to know about the procedures
contained in the file. BAIL must have access
to a procedure descriptor in order to call any
procedure (cf. the /4B switch). Thus a u s e r
who w i s h e s to use assembly language
procedures with BAIL must provide
appropriate procedure descriptors. T h e f i l e
cSUAIPSAILPD.FAI[S,AlL] def ines a FAIL macro
which wi l l g e n e r a t e a S a i l p r o c e d u r e
descriptor. The procedure descriptors may
reside in a separate load module if desired;
but they must be in the core image when BAIL
is being used.

149

APPENDICES SAIL

CHARACTER

H

APPENDIX A

Characters

EQUIVALENT RESERVED WORD

AND
EQV
NOT
OR
XOR
INF
IN
SUCH THAT
NEQ
LEQ
GEQ
SET0
SETC
UNION
INTER
ASSOC
SWAP

Stanford (SUAI) Character Set
The Stanford ASCII character set is displayed in
the following table. The three digit octal code
for a character is composed of the number at
the left of its row plus the digit at the top of
its column. For example, the code for “A”, is
lOO+l or 101 .

ASCII 8 1 2 3 4 5 6 7
J&h
800 NUL 4 a fi A - c II
010 x TAB LF VT FF CR Y b

SIXBIT 020 c 3 llUV30*
&A 830 w
08 048 SP ; "

d 2 V

; s % ; '
10 050 ()
20 068 8 1 ;;i5;:
30 070 8 9 ?
63 !Ot) Q A ;1 z ; ; r
SO 1:O H I J K L'tl N :
ISa. 120 P Q R S T U V W
70133 x Y 2 t \ I t *

140 a a b c d o f g
-150 h i ’
168 p q :

k I A n o
t

178- x y t I ; :LT ; ;;S

The tables below display the standard ASCII
codes, and the SOS representation for entering
the full ASCII character set from Teletypes or

similar terminals with restricted character sets.
The obscure names for the ASCII codes below
40 are listed just for confusion. Notes: “DEL”
(177) is the ASCII delete. “ESC” (33) is their ait
mode. Codes 136 and 137 have two different
interpretations, as shown be low. T h e S O S
representation i s s o c a l l e d b e c a u s e it is
provided by SOS, the Teletype editor. Certain
other programs also know about this
representation, but it is not built into Sail in
any way.

Standard RSCII

8 1 2 3 4 5 6 7

888 NUL SOH STX ETX EOT ENQ RCK BEL

- 818 BS TAB LF VT FF CR SO S I
8 2 8 O L E DC1 DC2 O C 3 D C 4 NRK S Y N E T B

838 CRN Etl SUB ESC FS GS RS US

848 SP ! * # S % 8 '

058 (1 a + - /

868 8 12 3 z 5; 7

878 8 9 0 > ?

188 e A ,;;;,G

ll8H I J K L tl N 0
l28P Q R S T U V U

138 X Y 2 t \ 3 AT ,c

148 * a b c d 'o f g
15Uh i j K I m n o

160 p q r s t u v n
178 x y t (I I I DEL

SOS Reprrsentation of Standard MCI1

6 1 2 3 4 5 6 7

8 8 8 - - - ? ! ?" ?# ?S ?X ?8 7'
810 ?(TAB LF VT FF CR ?I ?c
820 ?+ ?, ?- ?. ?/ ?8 ?I ?2
038 ?9 ?6 ?4 78 ?< ?> ?7 ?a
848 SP ! ' X S X 8 '
050 (1 /
868 8 1 4 ; i 5 i 7
878 8 9 :
100 e A B ; ; ;

77
f i'

ilOH I J K L tl N 0
l28P Q R S T U V U
138 x Y 2 t \ I t '-
148 ?@ ?A ?B ?C ?O ?E ?F ?G
158 ?H ?I ?J ?K ?L ?M ?N ?O
168 ?P ?Q ?R ?S ?T ?U ?V ?U
178 ?X ?Y ?Z 3 t ?: ?I ?3 ?\

The Sail compiler automatically transliterates “!”
to “-” before doing anything else (outside of
string constants, of course). It also believes
that BOTH ‘175 and ‘176 represent the right
brace character “)“.

150

S A I L -

APPENDIX B LIST

Sail Reserved Words
LISTC
LIST0
LNOT
LOAD-MODULE
LOCATION
LOP
LOR
LSH
MAKE
MATCHING
MAX
MEMORY
MESSAGE
MN
MOD
NEEDNEXT
MI
NEW
NEW-ITEMS
NEW-RECORD
NEXT
NIL
N O M A C
NOT
NOW-SAFE
NOW-UNSAFE
NULL
NULL-CONTEXT
NULL-DELIMITERS
NULL-RECORD
OF
OFC
OR
OWN
PHI
PNAMES
POLL
POLLING-INTERVAL
PRELOAD,WITH
PRESET-WITH
PRINT
PROCEDURE
PROCESSES
PROTECT,ACS
PUT
QUICK-CODE
REAL
RECORD-CLASS
RECORD-POINTER
RECURSIVE’
REDEFINE
REF,ITEM
REFERENCE
REMEMBER
REMOVE
REPLACE-DELIMITERSELSEC

ABS
ACCESS
AFTER
ALL
ALLGLOBAL
AND.
ANY-CLASS
APPLY
AR&LIST
ARRAY
ASH
ASSIGN ’

ASSIGNC
ASSOC
BBPP
BEFORE
BEGIN ,
BIND
BOOLEAN
BUCKETS
BUILT-IN
CASE
CASEC
CAUSE
CHECK-TYPE
CLEANUP
COMMENT

. COMPILER,SWITCHES
CONOK
CONTEXT
CONTINUE
COP
CPRINT
CVI
CVLIST
CVMS
CVN
CVPS
CVSET
DATUM
CI~I~~ATION

DELETE
DELlMlTERS
DEPENDENTS
DIV
DO
DOC -
DONE
DPB
ELSE

END

LIBRARY

ENDC
ENTRY
WV
ERASE
ERRORJvlODES
EVALDEFINE
EVALREDEFINE
EXPR,TYPE
EXTERNAL
FAIL
FALSE
FIRST
FOR
FORC
FOREACH
FORGET
FORLC
FORTRAN
FORWARD
FROM
GEQ
GLOBAL
GO
GOT0
IBP
IDPB
IF
IFC
IFCR
ILDB
IN
IN-CONTEXT
INF
INITIALIZATION
INTEGER
INTER
INTERNAL
INTERROGATE
ISTRIPLE
ITEM
ITEM-START
ITEMVAR
KILL-SET
LABEL
LAND
LDB
LEAP-ARRAY
LENGTH
WI
LET

APPENDICES

REQUIRE
RESERVED
RESTORE
RETURN
ROT
SAFE
SAMEIV
SECOND
SEGMENT-FILE
SEGMENT-NAME
SET
SETC
SETCP
SETIP
SET0
SHORT
SIMPLE
SOURCE-FILE
SPROUT
SPROUT-DEFAULTS
START-CODE
STEP
STEPC
STRING
STRING,PDL
STRING-SPACE
SUCCEED
SUCH
SWAP
SYSTEM,PDL
THAT
THEN
THENC
THIRD
TO
TRUE
UNION
UNSTACK-DELIMITERS
UNTIL
UNTILC
VALUE
VERSION
WHILE
WHILEC
XOR

151

APPENDICES-

APPENDIX C

Sail Predeclared Identifiers

SPINT
SPITM
SPLST
SPREC
SPREL
SPRINT
SPSET
SPSTR
ACOS
ANSWER
ARRBLT
ARRCLR ’
ARRINFO
ARRTRAN
ARRYIN
ARRYOUT
ASIN
ASKNTC
ATAN
ATAN
BBPP.
BINDIT
BREAKSET
CALL
CALLER
CAUSE1
CHNCDB
CLKMOD
CLOSE
CLOSIN
CLOSO
CLRBUF
CODE
COMPILER-

BANNER
c o s
COSD
COSH
CVGSTR
CVASC
CVASTR
CVD
CVE
CVF
CVFIL -
CVG
CVIS
c v o
cvos
c v s
CVSI
CVSIX

152

CVSTR
CVXSTR
DDFINT
DEL,PNAME
DFCPKT
DFRllN
DFRINT
DISABLE
EDFILE
ENABLE
ENTER
EQU
ERMSBF
EVENT-TYPE
EXP
FILEINFO
GETBREAK
GETCHAN
GETFORMAT
GETPRINT
INCHRS
INCHRW
INCHSL
INCHWL
INPUT
INSTR
INSTRL
INSTRS
INTIN
INTMAP
INTPRO
INTSCAN
INTSET
INTTBL
JOIN
LINOUT
LISTX
LOG
LOOKUP
MAINPI
MAINPR
MKEVTT
MTAPE
MYPROC
NEW,PNAME
OPEN
OUT
OUTCHR
OUTSTR
POINT
PRISET
PSTATUS

RAN
REALIN
REALSCAN
RELEASE
RENAME
RESUME
SCAN
S C A N C
SETBREAK
SETFORMAT
SETPL
SETPRINT
SIN
SIND
SINH
SQRT
STDBRK
SUB’3
SUBST
SUSPEND
TANH
TERMINATE
TRIGINI
TTYIN
TTYINL
TTYINS
TTYUP
TYPEIT
URSCHD
USERCON
USERERR
USETI
USETO
WORDIN
WORDOUT

SUAI ONLY
GET-BIT PTCHRS
GET-DATA PTCHRW
GET-ENTRY PTIFRE
GET-SET PTOCHS
IFGLOBAL PTOCHW
ISSUE PTOCNT
LODED PTOSTR

TOPS-1 0 ONLY
BACKUP INOUT
CHNCDB GETSTS
ERENAME SETSTS

CMU ONLY
ARDINIT ~OTVEC
ARDSTR INITSEA
CHARSZ INVVEC
CHRMOD MOUSES
CLEAR MOUSEW

TYMSHARE ONLY
AUXCLR
AUXCLV

TENEX ONLY
ASND
ATI
BKJFN
CFILE
CHARIN
CHAROUT
CHFDB
CLOSF
CNDIR
CVJFN
DEVST
DEVTYPE
DIRST
DTI
DVCHR
ERSTR
GDSTS
GJINF
GNJFN
GTAD
GTFDB
GTJFN
GTRPW
GTSTS
IDTIM

CALLI
CHNIOR

INDEXFILE
INTTY
JFNS
JFNSL
KPSITIME
MTOPR
ODTIM
OPENF
OPENFILE
PBIN
PBOUT
PMAP
PSIDISMS
PSIMAP
PSIRUNTM
PSOUT
RCHPTR
RDSEG
RELD
RFBSZ
RFCOC
RFMOD
RFPTR
RLJFN
RNAMF

SAIL

PTYALL
PTYGET
PTYIN
PTYREL
PTYSTR
PUT-DATA
QUEUE

INTMOD
TMPIN
TMPOUT

SEAINIT
SEAREL
SETPNT
SVEC
VISVEC

CHNIOV
IONEOU

RTIW
RUNPRG
RUNTM
RWDPTR
SCHPTR
SDSTS
SETCHAN
SETEDIT
SETiNPUT
SFCOC
SFMOD
SFPTR
SINI
SIZEF
STDEF *
STDIR
STI
STIW
STPAR
STSTS
STTYP
SWDPTR
UNDELETE

SAIL _ ’ APPENDICES

APPENDIX D

Indices for Interrupts

SUAI INTERRUPT SYSTEM

NAME NUMBER DESCRIPTION
a

I N T S W W , I N X 0

INTSWDJNX 1

I N T S H W , I N X 2

INTSHDJNX 3

INTTTYJNX 4

INTPTOJNX 5

INTMAIL, INX 6

INTPTIJNX 8

You will receive an interrupt
when your job is about t o
be swapped out.

You will receive an interrupt
when your job is swapped
back into core. If you’ are
activated for interrupts for
swap out also, you will
receive these two interrupts
as a pair in the expected
order every time your job is
swapped.

You will receive an interrupt
when your job is about to
be shuffled.

You will receive an interrupt
w h e n y o u r j o b h a s b e e n
shuffled.

You will receive an interrupt
e v e r y t i m e y o u r p r o g r a m
would be activated due to
the teletype if it were
waiting for the teletype. As
long as you do not ask for
more than there is in the
t e l e t y p e b u f f e r , y o u m a y
read f rom the te le type a t
interrupt level.

Y o u w i l l b e i n t e r r u p t e d
every time the PTY job goes
into a wait state waiting for
you to sent it characters.

Interrupts whenever
s o m e o n e S E N DS you mai l
(see [Frost]). You may r e a d
the letter at interrupt level.

Y o u w i l l b e i n t e r r u p t e d
every time any job on a PTY
YOU own send you a
character (or line).

INTPARJNX 9 I n t e r r u p t s y o u o n p a r i t y
errors in your core image.

INTCLKJNX 1 0 Y O U w i l l b e i n t e r r u p t e d a t
every clock tick (1/60th of a
second).

INTINR,INX 11 IMP interrupt by receiver.

INTINSJNX 1 2 I M P i n t e r r u p t b y s e n d e r .

INTIMSJNX 13 IMP sta tus change in terrupt .

INTINPJNX 1 4 I M P i n p u t w a i t i n g .

INTTTIJNX 1 5 Y O U w i l l b e i n t e r r u p t e d
w h e n e v e r <esc> I is typed
on your teletype.

INTPOV,INX 19 Interrupts you on push-down
overflow.

INTILMJNX 2 2 I n t e r r u p t s y o u o n i l l e g a l
memory references, that is,
r e f e r e n c e s t o memory
outside of your core image.

INTNXM,INX 23 You will receive an interrupt
whenever your program
references non-existent
memory.

I N T F O V , I N X 2 9 I n t e r r u p t s y o u o n f l o a t i n g
overflow.

INTOVJNX 3 2 I n t e r r u p t s y o u o n a r i t h m e t i c
overflow.

1 Bits 33 through 35 are left to the user.
R E Q U I R E “SYS:PROCES.DEF” S O U R C E - F I L E t o
def ine the above names. NOTE: to program
yourself for more than one interrupt, you must
execute two separate INTMAP statements.

1 5 3

APPENDICES SAIL

TOPS-1 0 INTERRUPT SYSTEM APPENDIX E

NAME NUMBER DESCRIPTION Bit Names for Process Constructs

INTPOV-APR 19 Interrupts you on push-down
stack overflow.

INTILM-APR 2 2 I n t e r r u p t s y o u o n i l l e g a l
memory references, that is,
r e f e r e n c e s t o memory
outside of your core image.

INTNXM-APR 23 You will receive an interrupt
whenever your program
references non-existent
memory.

I N T F O V , A P R 2 9 I n t e r r u p t s y o u o n f l o a t i n g
overflow.

INTOV,APR 32 Interrupts you on ar i thmet ic
overflow.

TENEX PSI CHANNELS

CHANNEL USE

O - 5

;

‘8
9
10

::
13
14
15
16
17
18
19

20 .
21
2 2
2 3
2 5 - 3 5

1 5 4

terminal character
APR integer overflow, no divide
A P R f l o a t i n g o v e r f l o w , e x p o n e n t
underflow
unused
pushdown overflow
file EOF
file data error
file, unassigned
file, unassigned
time of day
illegal instruction
illegal memory read
illegal memory write
illegal memory execute
subsidiary fork termination, forced
freeze
machine size exceeded
SPACS trap to user
reference to non-existent page -
unused
ferminal character

SPROUT OPTIONS

B I T S N A M E DESCRIPTION

14-17 QUANTUM(X) Q + IF X=0 THEN 4 ELSE
2tX; The process wi l l be
given a quantum of Q
clock ticks, indicating that
if the user is using
CLKMOD to handle clock
interrupts, t h e p r o c e s s
should be run for at most
0 clock t icks , before
calling the scheduler. (see
about CLKMOD, page 120
f o r d e t a i l s o n m a k i n g
processes “time share”).

1 8 - 2 1 STRINGSTACK S + IF X=0 T H E N 1 6
ELSE X*32; The process
will be given S words of
string stack.

2 2 - 2 7 PSTACK(X) P+lF X=0 T H E N 3 2 E L S E
X*32; The process will be
given P words of
arithmetic stack.

28-31 PRIORITY(X) P + IF X=0 THEN 7 ELSE

32 SUSPHIM

33

34

35

SUSPME

RUNME

X ; T h e p r o c e s s w i l l b e
given a priority of P. 0 is
the highest pr ior i ty , and
reserved for the Sail
system. 15 is the lowest
priority.. Priorities
d e t e r m i n e w h i c h r e a d y
process the scheduler will
next pick to make running.

If set, suspend the newly
sprouted process.

Not used at present.

If set, suspend the
p r o c e s s i n w h i c h t h i s
sprout statement occurs.

If set, continue to run the
p r o c e s s i n w h i c h t h i s
sprout statement occurs.

S A I L _ ’ APPENDICES

RESUME OPTIONS

3 3 - 3 2 READYME

KILLME

IRUN

3 4

3 5 NOTNOW

CAUSE OPTIONS

3 5 DONTSAVE

3 4 TELLALL

If 33-32 is 1, then the
current process will not
b e s u s p e n d e d , b u t b e
made ready.

If 33-32 is 2, then the
current process wi l l be
terminated.

If 33-32 is 3, then the
current process will not
b e s u s p e n d e d , b u t b e
made running. The newly
resumed process will be
made ready.

T h i s s h o u l d a l w a y s b e
zero.

If set, this bit makes the
newly resumed process
ready instead of running.
I f 33-32 are not 3 , then
this bit causes a
rescheduling.

N e v e r p u t t h e < e v e n t
item> on the notice queue.
If there is no process on
the wait queue, this makes
the cause statement a no-
op.

Wake all processes
w a i t i n g f o r t h i s e v e n t .
Give them all this item.
The highest priority
process will be made
running, others wi l l be
made ready.

33 . RESCHEDULE Reschedule as soon as
possible (i.e., immediately
after the cause procedure
has completed executed).

INTERROGATE OPTIONS

3 5 RETAIN- Leave the event notice on
the notice queue, but still
return the notice as the
value of the interrogate.

If the process goes into a
wai t s ta te as a resul t o f
t h i s I n t e r r o g a t e , a n d i s
subsequently awakened
b y a C a u s e s t a t e m e n t ,
then the DONTSAVE bit in
the Cause statement will
over r ide the RETAIN bi t
in the Interrogate if both
are on.

34 WAIT If the notice queue is
empty, then suspend the
process executing the
i n t e r r o g a t e a n d p u t i t s
process item on the wait
queue.

3 3 RESCHEDULE Reschedule as soon as
possible (i.e., immediately
af ter execut ion of the
interrogate procedure).

32 SAY-WHICH Creates the associat ion
E V E N T - T Y P E @ < e v e n t
n o t i c e > p < e v e n t t y p e >
where <event type> is the

type of the event
returned. Useful with the
set form of the
Interrogate construct.

155

APPEfiDICES-

APPENDIX F

Statement Counter System

GENERAL DISCUSSION
The statement counter system allows you to
determine the number of times each statement
in your program was executed. Sail
accompl ishes th is by inser t ing an ar ray of
counters and placing AOS instructions at
various points in the object program (such as in
loops and conditional statements). Sail
automatically calls K-ZERO to zero the counter
a r r a y b e f o r e y o u r p r o g r a m i s e n t e r e d a n d
K-OUT to write the array before exiting to the
system. I f your program does not ex i t by
fall ing out ,the bottom, or you are interested
only in counts during specific periods, then you
may declare K-OUT and K-ZERO as external
procedures and call them yourself.

Anot her program, called PROFIL, is used to
merge the l is t ing f i le produced by the Sai l
compiler with the file of counters produced by
the execution of your program. The output
of the PROFIL program is an indented listing
with execution counts in the right hand margin.

Since the AOS instructions access fixed
locat ions, a n d t h e y a r e p l a c e d o n l y w h e r e

.needed t o d e t e r m i n e p r o g r a m f l o w , they
s h o u l d n o t add m u c h o v e r h e a d t o t h e
execution time. Although no large study has
been made, the counters seem to contribute
about 2% to the execution time of the
prof i le program, which has a fa i r ly deeply
nested structure.

HOW TO GET COUNTERS
In order to use the counter system you must
g e n e r a t e a l i s t i n g a n d a l s o s p e c i f y t h e /K
switch. Speci fy ing /K automatically selects
/l OF,. since the PROFIL program needs this
listing format. The characters ‘002 and ‘003 in
the listing mark the location of counters.

At the end of each program (i.e. each separate
compilation) is the block of counters, preceded
by a smal l data b lock used by K-ZERO and
K-OUT. This - b lock conta ins the number of
counters, the name of the list file, and a link
t o o t h e r such b locks . The f i rs t counter
location is given the symbolic name .KOUNT,
w h i c h i s a c c e s s i b l e f r o m D D T , b u t c a n n o t
be referenced by the Sail program itself.

156

SAIL

K-OUT uses GETCHAN to find a spare
channel , does a s ing le dump mode output
which writes out all the counters for all the
programs loaded having counters, and then
releases the channel. T h e f i l e which it
writes is xxx.KNT, where xxx is the name of the
l is t f i le of the f i rs t program loaded having
counters (usually the name of the Sail source
file). If there are no counters, K-OUT s i m p l y
returns.

PROFILE PROGRAM
The program PROFIL is used to produce the
program profile, i.e. the listing complete with
statement counts. It operates in the following
manner. F i r s t i t r e a d s i n t h e f i l e xxx.KNT
created by t h e e x e c u t i o n o f t h e u s e r
program. This file contains the values of the
counters and the names of the list files of the
prograrns loaded which had counters. It then
reads t h e t h e l i s t f i l e s a n d p r o d u c e s t h e
profile.

The format of the l is t ing is such that only
statements executed the same number of times
are listed on a single line. In the case of
conditional statements, t h e s t a t e m e n t i s
continued on a new line after the word THEN.
Conditional expressions and case expression,
on the other hand, are still listed on a single
line. In order that you might know the
execution counts, they are inserted into the
text surrounded by two “brokets” (e.g. <<15>>).

P R O F I L e x p e c t s a c o m m a n d s t r i n g o f t h e
form

<output>+<input> (swi tches)

where <input> is the name of the file containing
the counters; extension .KNT is assumed. If
the output device is the DSK, the output file will
have a default extension of .PFL. Although
the l ine spacing wi l l probably be d i f ferent
from the source, PROFIL makes an effort to
keep any page spacing that was in the source.
The switches allowed by PROFIL are

SAIL

/nB
/nC
IF
/I
/nK
/nL
/N
/S
/T

Indent n spaces for blocks (default 4)

Indent n spaces for continuations (default 2)
Fill out every 4th line with “...” (default ON)
Ignore comments, strip them from the listing
Make counter array of size n (default 200)
Maximum line length of n (default 120)
Suppress /F feature
Stop after this profile
TTY mode - / 1 C/2B/F/8OL

SAMPLE RUN
Suppose that you have a Sail program named
FOO.SAI for which you desire a prof i le . The
following statements will give you one.

.EX /LIST FOO(K) (or TRY or DEB or what hrve yw)

. . . any input to FOO . . .

EXIT

tc
.R PROFIL
l FOOc FOO/T/S

EXIT HEAD

tC

At this point, the file FOO.PFL contains, the
p r o f i l e , s u i t a b l e f o r t y p i n g o n t h e T T Y o r
editing.

’ APPENDICES

APPENDIX G

Array Implement at ion

L e t S T R I N G A R b e 1 (T R U E) i f t h e a r r a y i n
question is a String array, 0 (FALSE) otherwise.
Then a Sai l ar ray of n d imensions has the
following format:

HEAD: +DATAWD ;+ MEANS “POINTS AT”
HEAD-END- 1

ARRHED: BASE-WORD ;SEE BELOW
LOWER,BD(n)
UPPER-BD(n)
MULT(n)
..*
LOWER,BD(1)

- UPPER,BD(1)
MULT(1)
NUM,DIMS,,TOTAL~SIZE

DATAWD: BLOCK TOTAL-SIZE
<sometimes a few extrr words>

END: 40OOOO,,-,HEAD

ARRHED

NM-DIMS

DATAWD

The first two words of each array,
and the last, are control words for
t h e d y n a m i c s t o r a g e a l l o c a t o r .
These words are a lways present
f o r a n a r r a y . T h e a r r a y a c c e s s
code does not refer to them.

Each array is preceded by a block
o f 3*n+2 c o n t r o l words. The
B A S E - W O R D e n t r y i s e x p l a i n e d
later.

This is the dimensionality of the
array. If STRINGAR, this value is
negated before storage in the left
half.

This is stored in the core location
bearing the name of the array (see
symbols, page 141). If it is a string
array, DATAWD+ 1 is stored
instead.

TOTAL-SIZE The total number of accessible
elements (double if STRINGAR) in
the array.

BOUNDS The lower bound and upper bound

157

APPENDICES SAIL

for each dimension are stored in
t h i s t a b l e , t h e l e f t - h a n d i n d e x
values occupying the higher
addresses (c losest to the array
data). If they are constants, the
compiler will remember them too
and try for better code (i.e.
immediate operands).

MULT This number, for dimension m, is
the product of the total number of
e l e m e n t s o f dimensions m+l
through n . M U L T f o r t h e l a s t
dimension is always 1.

BASE-WORD This is DATAWD minus the sum of
(STRINGAR+l) * LOWER,BD(m) *

I

MULT(m) for all m from 1 to n. If
this is a string array then the left
half is -1.

The formula for ca lcu la t ing the address of
A[I,J,KJ is:

rddress(A[I,J,K]) -
rddress(DATAWD) +

(I-LOWER-BD(1))*:MULT(I 1 +
(J-LOWER_BD(2))*MULT(2) +
(K-IOWER,BD(3))

This expands to

rddress(A[I,J,K]) 9
rddross(DATAWD) +

I*MULT(1) + J*MlJLT(2) 4 K
-(LOWER-BD(1)*MULT(1) 4

LOWER_BD(2)*MULT(2) 4

LOWER,BD(3)

which is

B A S E - W O R D 4 I*MULT(1) 4 J*MULT(2) 4 K.

By f i re -ca lculat ing the ef fects of the lower
bounds, several instructions are saved for each
array reference.

The LOADER gets confused if BASE-WORD does
not designate the same segment as DATAWD.
The difference between BASE-WORD and the
address of any location in the array should be
l e s s t h a n ‘ 4 0 0 0 0 0 . Avoid constructs like
INTEGER ARRAY X[1000000: 1 OOOOOS]. Declare
large static arrays last.

APPENDIX H

St ring Implement at ion

STRING DESCRIPTORS
A S a i l S t r i n g h a s t w o d i s t i n c t p a r t s : t h e
descr iptor and the text . The descr iptor is
unique and has the following format:

WORDl: CONST,,LENGTH
WORD2: BYTP

1) CONST. This entry is 0 if the String is
a constant (the descriptor will not be
altered, and the String text is not in

- String space, is therefore not subject
to garbage collection), and non-zero
otherwise.

2) LENGTH. This number is zero for any
null String; otherwise it is the number
of text characters.

3) BYTP. If LENGTH is 0, this byte pointer
is never checked (it need not even be
a val id byte pointer . Otherwise, an
ILDB machine instruction pointed at the
BYTP word will retrieve the first text
character of the String. The text for a
Str ing may begin at any point in a
word. The characters are s tored as
LENGTH contiguous characters.

A Sail String variable contains the two word
descr iptor for that var iab le . The ident i f ier
naming it points to WORD1 of that descriptor. If
a String is declared INTERNAL, a symbol is
f o r m e d t o r e f e r e n c e W O R D 2 b y t a k i n g a l l
characters from the original name (up to 5) and
concatenating a “.‘I (OUTSTRING’s s e c o n d w o r d
would be labeled OUTST.).

When a Str ing is passed by reference to a
procedure, the address of WORD2 is placed in
the P-stack (see page 160). For VALUE Strings
both descriptor words are pushed onto the SP
stack.

A Str ing array is a b lock of 2-word Str ing
descriptors. The array descriptor (see page
157) points at the second word of the first
descriptor in the array.

Information is generated by the compiler to

158

S A I L _ APPENDICES

I
,

allow the locations of all non-constant strings
to be fou!d for purposes of garbage-collection
and initialization. All String variables and non-
preloaded arrays are cleared to NULL whenever
a Sai l program is s t a r t e d or restarted. The
non-constant strings in Preloaded arrays are

1)

2)

3)

T h e *initial s t r ing s p a c e s i z e i s settable
via REQUIRE or the ALLOC sequence. Each
string-space increment will be the same
as the original size. The threshold (see
below) for expansion is l/8 the str ing
space size (increment s ize) . One can
modify these values with USERCON or by
storing directly into GOGTAB.

NFIIIE VRLUE
STINCR LH: # chars in incromrnt

RHr 4+ # words in incrrmont

, STREQO LH: X char@ in threshold
RH: # uordr in thrrrhold

(the threshold) Assume that the garbage
collector was called to make room for R
characters, a n d t h a t a f t e r g a r b a g e
collect ion M- 1 discont iguous string spaces
a r e f u l l , w i t h t h e M ’ t h h a v i n g N f r e e
characters . If N is less than or equal to
R+LH (STREQD) then expansion to M+l
string spaces takes place. In other words,
if STREQD is l/8 the size of the current
space then that space will not be allowed
to become more than about 7/8 full. All
b u t t h e c u r r e n t s p a c e a r e a l l o w e d t o
become as full as possible, however.

Wizards may cause the garbage collector
to keep some statistics by setting SGCTIME
to -1.

also set to null by a restart.

INEXHAUSTIBLE STRING SPACE 0
The string garbage collector expands string
space (us ing discontiguous b locks) whenever
necessary to satisfy the demand for places to
put strings.

Here are some points of interest:

APPENDIX I

Save/Continue

1 A (new) save/cont inue faci l i ty has been
implemented in the Sail compiler. This allows
compiling header files, saving the state of the
compiler, and resuming compilation at a later
t ime. The save/cont inue fac i l i ty works wi th
f i les as the basic uni t ; compi la t ion can be
interrupted only at the end of a fi le, The /X
(extend) switch controls the new feature. The
examples s h o w n h e r e are f o r T O P S - l o .
Analogous commands work under TENEX, using
the TENEX RUN and SAVE commands. Example:

.R-SAIL
' .INTRMD.REL[PRJ,PRGJcA,B,C/X

A.SAI 1 etc.

SAVE ME FOR USE ASXSAIL
EXIT
.SAVE XSAIL
JOB SAVEDIN 25K
UPPER NOT SAVED!

.RU XSAIL
rFINALcD,E,F
DSAI
Copying DSK:INTRMD.REL[PRJ,PRG]
2 3 rtc.

l tc

The above is equivalent to

.R SAIL
l FINALcA,B,C,D,E,F

On TENEX, the user will want to save all of
core when creating the XSAIL.SAV file.

Information is s a v e d in XSAILSAV and in the
binary file from the first “compilation” (in this
c a s e INTRMD.REL). When compilation is
resumed, the f inal b inary f i le is in i t ia l ized
bY copying the intermediate file.
Save/continue is not allowed if the file break
occurs while scanning false conditional
compilation or actual parameters to a macro
call.

A h int on using th is feature: I f the source

159

APPENDICES SAIL

term of your command string consists of just
one file, and this one file does REQUIRES o f
other source fi les, the following setup works
well.

OrIginal flie FOO.SAI:
BEGIN “FOO”

REQUIRE “[I[1” DELIMITERS;
DEFINE !.[COMMENT];
REQUlRE “BAZSAI” SOURCE-FILE;
REQUIRE “MUMBLE.SAI” SOURCE-FILE;

<rest of fib

END “FOO” .

New file FOOSAI:
IFCR NOT DECLARATION(GARPLY) THENC

BEGIN “FOO”
REQUIRE “[][I” DELIMITERS;

DEFINE CARPLY-TRUE;
DEFINE !=[COMMENT];
REQUIRE “BAZ.SAI” SOURCE-FILE;
REQUIRE “MUMBLESAl” SOURCE-FILE;

ENDC;

< r e s t o f file>

EhD “FOO”

New fde FOO HDR:
IFCR NOT DECLARATION(GARPl.Y) THENC

BEGIN “FOO”
REQUIRE ‘I[J[1” DELIMITERS;

DEFiNE GARPLY-TRUE;
DEFINE !=(COMMENT);
REQUIRE “BAZ SAI” SOURCE,FILE;
REQUIRE “MUMBIESAI” SOURCE-FILE;

ENDC;

lnltral compllrtion:
.R SAIla
~FOO.INT(PRJ,PRG]cFOO.HDR/X

SAVE ME!
.SAV XSAll

Now the command string

FOOtFOO

will work both in the case of .R SAIL and in the
case .RU XSAIL.

APPENDIX J

Procedure implement at ion

When a procedure is entered it places three
words of control information on the run time
(P) s tack. This “mark stack contro l packet”
contains pointers to the control packets for
the procedure’s dynamic and static parents.
Register F (‘12) is set to point at this area,
This pointer is then used to access procedure
parameters and other “in stack” objects, such
as the local variables of a recursive procedure.
Many of the run-time routines (including the
string garbage collector) use rF to find v i ta l
infgrmation. Therefore, THE USER MUST NOT
HARM REGISTER ‘12. If you wish to refer in
assembly language to a procedure parameter,
the safest way is name it, and let Sail do the
address arithmetic. (Similarly one may use the
ACCESS construct).

STACK FRAME
Shown here is the stack frame of a recursive
procedure.

:
rF .B :

.

..LL..*
parame

rP -8 :

.L...................,,,,,..
: r e t . a d d r

. .
: d y n a m i c I i n k

..I.......,.,.,..,....,.,,.,
*proc desc : s t a t i c I i n k

. .
o l d v a l u e o f rSP

.I........
s t a r t o f r e c u r s i v e l o c a l s

e..,.. .**.*. . :
end o f r e c u r s iva locals :t

.:

.:

.:

.:

. :

. :

(o l d rF)

(rF o f static
parent 1

(t-P p o i n t s

; *............*.....I.......,,: h e r e a f t e r
t start of uorking storage : e n t r y t o a
:.~...*........,...,.....,I,..: recurs i ve
: : p r o c e d u r e)

If a formal parameter is a value parameter then

160

SAIL _ ’ APPENDICES

the actual parameter value is kept on the stack.
If a formal parameter is a reference parameter,
then the address of the actual parameter is put
o n t h e s t a c k . Non-own str ing locals (to
recursive procedures) and string value
parameters are kept on the string (SP h ‘16)
stack. The stack f rame for a non-recurs ive
procedure is the same except that there are no
local variables on the stack. The stack frame
for a SIMPLE procedure consists only of the
parameters and the return address.

ACCESSING THINGS ON THE STACK
SIMPLE procedures access their parameters
r e l a t i v e t o t h e t o p - o f - s t a c k p o i n t e r s SP(for
strings) and P (for everything else). Thus the
the k’th <of n) string value parameter would be
accessed by

OP flC,2sk-kt(SP) ;(SP='16)

and the j’th (of m) “arithmetic” -- i.e., not value
string -- parameter would be accessed by

OP RC, j-m-l (PI ;(P='17)

Non-SIMPLE procedures use rF (register ‘12) as
a base for addressing parameters and recursive
locals . Thus the j ’ th p a r a m e t e r w o u l d b e
accessed b y

OP AC,j-a-2(rF)

or, in the case of a string, by

IIOVE ACX,2(rF) ;points at top of
;string S t a c k when
;proc uas ontorod

OP KY, 2*k-2*m CKX)

Similarly, recursive locals are addressed using
positive displacements from rF.

An up-level reference to a procedure’s parent
is made by executing the instruction .

r HRRZ RC,l(rF) ;nocc RC points at
jstack frame of parent

and then using AC in the place of rF in the
access sequences above, iterating the process
if need be to get at one’s grandparent, or some
more distant lexical ancestor.

NOTE: When Sail compiled code needs to make
such an up-level reference it keeps track of

any intermediate registers (called “display”
registers) that may have been loaded. Thus, if
you use several up-level references together,
you only pay once for setting up the “display”,
unless some intervening procedure call or the
like should cause Sail to forget whatever was in
its accumulators. Note here that if a display
register is thrown away, there is no attempt to
save its value. At some future date this may be
done. It was felt, however, that the minimal
(usually zero) gain in speed was just not worth
the extra hair that this would entail.

ACTIONS IN THE PROLOGUE FOR NON-SIMPLE
PROCEDURES
The algorithm given here is that for a recursive
p r o c e d u r e b e i n g d e c l a r e d i n s i d e a n o t h e r
procedure. T h e e x a m p l e s s h o w h o w it i s
simplified when possible.

1. Pick up proc descriptor address.

2. Push old rF onto the stack.

3. Calculate static link. (a). Must loop
back through the static links to grab
it. (b). once calculated put together
with the PDA and put it on the
stack.

4. Push current rSP onto the stack.

5. Increment stack past locals & check
for overflow.

6. Zero out whatever you have to.

7. Set rF to point at the MSCP.

EXAMPLES:

1. A non-recursive entry (note: in this section
only cases where F is needed are considered).

PUSH P,rF iSWE OYNRflIC LINK
SKIPA RC,rF
flOVE ac; 1 (AC 1 ;GO UP STRTIC LINK
HLRZ TEUP, l(RC) ;LOOK RT POR IN STFICK
CRIE TEMP,PPOR ;IS IT THE WIE RS PQRENTS
JRST 3
HRLI ;IE,POR

;NO
;PICK UP PROC OESC

PUSH P,RC ;SAVE STATIC LINK
PUSH P,SP
HRRZI rF,-2(P) ;NEW RF

In the case that the procedure is declared in

161

APPENDICES SAIL

the outer block we don’t need to worry about
the static link and the prologue can look like

PUSH P , r F ;SFlVE DYNRMIC LINK
PUSH P , fXUD PDR,Bl ;STFITIC LINK WORD

PUSH P,SP ;SRVE STRING STRCK
HRRZI rF,-2(P) ;NEU F REGISTER

2. Recursive entry -- i.e one with locals in the
stack.

PUSH
SKIPA

tlOVE

HLRZ
CFlIE
JRST
HRL I
PUSH
PUSH
HRLZI
HRRI
ADD

CRIL

P,rF
FlC,rF

fx,1ox)
TEMP, (FICI
TEllP,PPDA

3
Iii, PDFI
P’, lx
P,SP
TEllP, 1 (PI
TEtlP,Z (P)
P , tXWD l o c a l s ,

P,O

;SFlVE DYNRtllC L I N K

;GO UP STRTIC LINK
;LOOK FIT PDF\ IN STRCK
;IS IT THE SRllE A S P A R E N T S
;NO
;PICK UP PROC DESC
;SRVE STFlTIC L I N K

;
locals1 lcreate space for

;arith locals
< t r i g g e r p d I o v error,
SETZM -1 (TEllPI ;tero o u t l o c a l s

BLT TEllP, (P) i
H R L Z I TEtlP, 1 (SPI

HRRI TEttP,2(SPI

ROD S P , [XUD 2s s t r i n g locals,2* s t r i n g l o c a l s 1

CFlIL SP,8 ;checK for pd I ov

<cause p d l o v e r r o r >

SETZtl -1 (TEtlP)

BLT TERP, (SPI ;zero o u t s t r i n g l o c a l s

H R R Z I r F , - locals-3(P)

T h e B L T o f z e r o s i s r e p l a c e d b y r e p e a t e d
pushes of zero if there are only a few locals.
Again, the loop is replaced by a simple push if
the procedure is declared in the outer block.

ACTIONS AT THE EPILOGUE FOR NON-SIMPLE
PROCEDURES

1. If returning a value, set it into 1 or
onto right spot in the string
stack.

2. I Do any deallocations that need to be
made.

4. - Restore rF.

5. Roll back stack.

6. R e t u r n e i t h e r v i a P O P J P , o r b y
JRST @mumble(P)

EXAMPLES:

1. No parameters.

* s t e p l*
<step 2,

tlOVE rF, (rF)
SUB P, tXUD tlt3,ht31 ;tl= # LOCAL VQRS
POPJ P,

2. n string parameters, m other parameters, k
string locals on stack, j other locals on stack.

<step 1,
< s t e p 2,
llOVE rF, (rFI
SUB SP, IXWD 2Gk +2tn, 2%K t2ml
SUB P , tXWD j t m t 3 , jtm+31 ;PDP STACK
JRST em+1 (PI

SIMPLE procedures are similar, except that rF is
never changed.

PROCEDURE DESCRIPTORS
Procedure descriptors are used by the storage
allocation system, the interpretive caller, BAIL,
and various other parts of Sail. They are not
put out for SIMPLE procedures. The entries are
shown as they are at the present t ime. No
promise is made that they will not be different
tomorrow. If you do not understand this page,
do not worry too much about it.

-1:

0:
I:

,ii

5:
6:

7:

10:
1 I:
12:

I 13:

link for pd list

entry address

word1 of rtrin8 for proc n a m e

word2 of string for proc name
type info for procedure,,sprout defaults

o rtrine paramsS2,,w a r i t h params+l

+ ss displ,, + as displ
lexic iev,,+-Aocal var info

d isp lay level,,+proc param stuff

p&,0
pent at end of mksemt,,parent’s pda
pent at prdec,,loc for jrst exit

type info for first argument,,0 (or ++defoult value)

type info for last areument,,O (or **default value)

Ivi: byte (4)type(9)lexical-level(23)location

A62

S A I L _ .APPENDICES

The type codes in the Ivi (local variable info)
block are as follows:

REFERENCES

type = 0
t y p e - 1
type = 2
type - 3
type l 4
type = 5
type . 6

typo l 7
type - 10

I

type - I 1
typo l 12
type= 17 *

end of procedure area
rrith array BBNEXEC
string rrrry
set or list
set or list wry
foreach search control block
list of all procoseer dependent on Feldman
this block.
context
a cleanup to br executed

record pointrr
record pointor array
block boundary. Location

location of prronts block’s
gives base
information

local variable info for each block is organized
as Frost

info for var

info for var
17,lov,loc of parent block bbw

H a r v e y

JSYS

vanLehn

MonCom

Nauer

OSCMA

Petit

B o l t B e r a n e k a n d N e w m a n ,
TENEX Executive Manual,
Cambridge, Massachusetts,
April 1973.

J.A. Feldman and P.D. Rovner,
A n A l g o l - B a s e d Associative
Language, CACM 12, 8 (August
1969), 439-449.

J.A. Feldman, J .R. Low, D.C.
S w i n e h a r t , a n d R . H . T a y l o r ,
Recent Developments in SAIL,
AFIPS FJCC 1972, 1193-1202.

M. Frost, UUO Manual (Second
Edition), Stanford Artificial
Intelligence Laboratory
O p e r a t i n g N o t e 5 5 . 4 (J u l y
1975).

B. Harvey (M. Frost, ed.),
Monitor Command Manual,
Stanford Artificial Intelligence
Laboratory Operating Note 54.5
(January 1976).

B o l t , B e r a n e k , a n d N e w m a n ,
TENEX JSYS Manual, Cambridge,
Massachusetts, September
1973.

K . vanlehn, SAIL, SAILON 5 7 . 3 ,
(June 1973).

[Harvey), [BBNEXEC], [OSCMA]

P. Nauer (ed.), Rev ised Report
on the Algor i thmic Language
ALGOL-60, CACM 6 (1963) l-
17.

decsystemlo Operating System
Commands Manual DEC-lO-
OS&IA-A-D, Digital Equipment
Corporation, Maynard,
Massachusetts, May 1974.

P. Petit (R. Finkel, ed.), RAID
M a n u a l , SAILON 5 8 . 2 , (M a r c h
1975).

163

REFERENCES SAIL

Reiser

Savitzky

SmithN

SrnithR

J.F. Reiser, BAIL--A Debugger
for SAIL, Stanford Art i f ic ia l
Intelligence Laboratory Memo
AIM-270, Cornputer Science
Department Report STAN;CS-
75-523, October 1975.

S.R. Savitzky (L. Earnest, ed.)
Son of Stopgap, SAILON 50.3,
March 1971.

N. Smith, Sail Tutorial, Stanford
Aritifical Intelligence
Laboratory M e m o A I M - 2 9 0 ,
Computer Science Department
Report STAN-CS-76-575,
August 1976.

R. Smith, TENEX SAIL, Institute
for Mathematical Studies in the
Social S c i e n c e s T . R . 2 4 8 ,
Stanford University, January
1975.

Swinehart & Sproull D.C. Swinehart and R.F.
S p r o u l l , S A I L , SAILON 5 7 . 2 ,
(January 197 1).

SysCall [Frost 1, [JSYS], [TopHand]

TopHand decsystemlo Assembly
Language Handbook DEC-lO-
NRZC-D, Digital Equipment
Corporation, Mayna t’d,
Massachusetts, 1973.

SAIL INDEX

INDEX

A (A N D) 2 6
- (NOT) 26
00 in substrings 28
00, in list REMOVES 9 0
n (INTERSECTION) 99
u (UNION) 99
v (O R) 2 6
!!GO 146
!!GSTEP 146
!!STEP 146
X (integer or real division) 27
& (CONCATENATION), of &rings 27
&, of lists 99
-, of sets 99
/ (real division) 27
<%z=# (RELATIONS) 26
?, Foreach i temvars 93
?, in Binding Booleans 91
?, Matching procedure formals 95

n (intersection) 97

U (union) 97

= iEQV) 1 5 0

-ERRJ- 1 4 0
-ERRP- 1 3 9
-SKIP, 27, 33, 43, 44, 48, 50, 70, 71, 72, 73,

74, 75, 76, 79, 81, 149

SCLASS 66
SRECS 66
SRECFN 66
SRECGC 66
SSPCAR 6 7

A B S 2 8
ACCESS 30
A C O S 5 1
A D J S P 1 3 4
A F T E R 88,89
algebraic variables 6
<algebraic-expression> 22
A L L 88,90
allocation of variables rnd arrays 10
A N D 26,88,150
ANSWER 112, 126
A N Y 9 9
A N Y - C L A S S 6 4

ANY, in Binding Boolean 91
ANY, in Derived Sets 92
ANY, in Erase statement 91
ANY, in Foreach 94
APPLY 115
<apply-construct> 114
ARG-LIST 1 1 4
<arg,list-specif ier> 1 1 4
ARGS 144
Array element designation 128
<array-declaration> 3
<array-list> 3
<array-type> 83
Arrays, allocation 10
Arrays, as parameters 7
Arrays, declaration 6
Arrays, initialization and reinitialization 10
Arrays, outer block 5, 7
Arrays, OWN 6
Arrays, PRELOADed 7
Arrays, SAFE declaration 6
Arrays, storage convention 7
ARRBLT 51
ARRCLR 51
ARRINFO 5 0
ARRTRAN 5 1
ARRYIN 41, 69
ARRYOUT 41,69
ASCII 150
ASH 27
ASIN 5 1
ASKNTC 113, 126
ASND 71
ASSIGN 114
<assign-statement> 114
ASSIGNC 6 2
<assignc> 5 6
assignment expressions 25
Assignment statement, semantics 15
<assignment-expression> 22
<assignment-statement> 14
ASSOC 150
ASSOCIATIONS 86
Associations, ERASE 90
Associations, implementation 87
Associations, introduction 83
Associations, MAKE 90
Associations, searching for 9 1
associative booleans 100
associative context 93
Associative search 9 1
Associative search, controling hash 91
associative search, relative speeds 95
associative searches, introduction 83
associative store 83, 86
Associative store, searching 9 1

1 6 5

INDEX SAIL

<associative-statement> 88
ATAN 5 1
ATAN 5 1
ATI 1 1 7
attr ibute 91
AUXCLR 43
A U X C L V 4 3

<backtracking-statement> 101
Backtracking, introduction 101
BACKUP 43
BAIL 141
BEFORE 88,89
BIND 91
Binding Boolean 91, 100
Binding Booleans, general considerations 91
<binding&list> 8 8
BINDIT 9 9
BINDIT, in Binding Boolean 92
BINDIT, in Derived Sets 92
BINDIT, i n Foreach 9 5
BINDIT, in Foreaches 93
BINDIT, in Matching Procedures 95
BKJFN 71
Block names 1, 140
<block> 1
Boolean Expression <element> 94
<boolean-expression> 22
Boolean, declaration 6
bound 91
Bracketed Triple item 90
Bracketed Triple Item Retrieval 90
Bracketed Triple Item retrieval 92

’ Bracketed Triple item retrieval, general
considerations 9 1

Bracketed Triple Items, ERASE 9 1
BREAK 144
BREAKSET 3 6
BRKERS 124
BRKMAK 124
BRKOFF 124
BUCKETS 9 1
BUILT-IN 6 1
Byte pointers, creation 50

CALL. 48, 80
CALLER 108
CALLI 4 8
CASE expressions 25
CASE statement 18
<case-expression> 22
<case-statement> 14
C A S E C 6 0
CAUSE 1 1 0
<cause-statement> 110
CAUSE, <options> 110, 155

CAUSE, user defined procedures for 112
CAUSE1 112, 126
Causing events, introduction 110
CFILE 70, 71
character codes 150
CHARIN 71, 79
CHAROUT 71, 79
CHECK-TYPE 6 1
CHECKED 85,89
Checked, formal parameters 86
CHECKED, in associative searches 91
Checked, itemvar procedures 86
Checked, type checking 99
CHFDB 71
CHNCDB 51
CHNIOR 4 3
CHNIOV 4 3
CHNTAB 120
CLEANUP 10
<cleanup-declaration> 4
CLKMOD 120
CLOSE 35, 69
CLOSF 70, 71
CLOSIN 35, 69
CLOSO 35, 69
CLRBUF 43
CNDIR 8 1
CODE 48
<code-block> 2 9
command line 133
<command-line> 1 3 2
Comment 1
COMMENTS 130
compile time expressions 58
COMPILER-BANNER 62
COMPILER-SWITCHES 136
<compound-statement> 1
concatenation of lists 99
<cond-camp-statement> 5 6
conditional compilation 60
Conditional Statements, arnbiguity 16
<conditional-expression> 22
<conditional-statement> 14
CONOK 6 1
Constants, arithmetic 129
Constants, octal 129
Constants, real 129
Constants, string 130
constructive item expressions 98
CONTEXT 101
Context elements 102
<context-declaration, 101
<context-element> 101
CONTINUE statement 19
Conversions, algebraic 23
COORD 144

166

S A I L - INDEX

COP 98, 125
coroutining with RESUMES 1 0 8
c o s 5 1
COSD 51
COSH 51
CPRINT 5 3
CTLOSW 79
CVGSTR 4 7
C V A S C 4 7
C V A S T R 4 7
C V D 4 6
C V E 4 7
C V F 4 7
CVFIL 5 0
C V G 4 7
C V I 8 7 , 1 2 3
CVIS 100, 124
CVJFN 71
CVLIST 1 2 3
C V M S 5 9 , 6 0
C V N 8 7 , 1 2 3
C V O 4 6
C V O S 4 6
CVPS 5 9
C V S 4 6
C V S E T 1 2 3
CVSI 1 0 0 , 1 2 4
CVSIX 4 7 .
C V S T R 4 7
C V X S T R 4 7

DATUM 85,89, 128
DATUM, type checking 99
D D T 1 4 0 , 1 4 5
deallocation of variables and arrays 10
DECLARATION (a function) 61
<declaration> 3, 83
default parameters 7
DEFINE 56, 57, 59, 61, 145
<def ine> 56
DEFPRI 1 0 5
DEFPSS 105
DEFQNT 105
DEFSSS 105
DEL-PNAME 100, 124
DELETE 88, 90
DELF 71
delimited strings 58
delimited-anything 61
del imited,expr 61
Delimiters- 57
DELIMITERS 5-7
XLiidiTERS, NULL 5 7
Delimiters, null 57
DELNF 72
DEPENDENTS 106

Derived sets 99
Derived Sets, general considerations 9 1
<derived-set> 9 7
DEVST 72
DEVTYPE 72
DFCPKT 126
DFRllN 1 1 7
DFRINT 1 1 8
DIRST 8 1
DISABLE 118

. DIV 27
DO statement 18
<do-statement> 14
DOC 56
DONEstatement 1 8
DONTSAVE 111, 155
DPB 50
DRYROT 131, 138
DSKIN 7 2
DSKOP 71
DSKOUT 72
DTI 117
DVCHR 72

EDFILE 4 9
EIR 120
<element-list> 8 8
<element> 88
<element>, Foreach 93
ELSE 14, 22
ELSEC 56
ENABLE 118
ENDC 56
ENTER 36,69
ENTRY specification 12
EQU 47
EQV 27, 150
ERASE 90
ERASE, in a Foreach 95
ERENAME 36
ERMSBF 49
error messages 138
error procedures 139
ERROR-MODES 138
ERSTR 72
EVALDEFINE 6 2
EVALREDEFINE 6 2
event notices 110
Event type items, datums of 112
event types 110
<event-statement> 110
EVENT-TYPE 111, 155
Events, introduction 110
EXP 52
EXPR,TYPE 62
<expression> 22

167

INDEX

EXTERNAL declaration 4, 13
EXTERNAL procedures 9, 12

FAIL 89, 95, 106
FALSE, definition 129
FILEINFO 5 0
FIRST 90, 125
fix (convert real to integer) 23
FIXR 2 4 , 1 3 4
float (convert integer to real) 24
FLTR 24, 134
FOR (substringer) 23, 27
FOR statement 17
<for-statement> 14
F O R C 6 0
FOREACH 8 8
Foreach <element>, Boolean Expression 94
Foreach <element>, List membership 93
Foreach <element>, Retrieval Triple 94
Foreach <element>, Set membership 93
Foreach <element% 9 3
Foreach i temvars 92
Foreach searches, relative speeds 95
<foreach-statement> 8 8
FOREACH, execution of 93
FOREACH, general considerations 91
FOREACH, increase speed of 91
FOREACH, main discussion of 92
Foreach, Matching Procedure <element> 95
FoTeach, satisfiers 93
FORGET 101, 102
FORLC 60
formal parameters, Leap 86
‘formals 7
FORTRAN procedures 9, 13, 20
FORTRAN, actual parameters 1 0
FORWARD declaration 4
FORWARD procedures 8
F R O M 8 8

G D S T S 7 2
generation of symbols using macros 59
G e n s y m 5 9
G E Q 1 5 0
GETBREAK 3 8
GETCHAN 35, 69
GETFORMAT 46
GETPRINT 5 3
G E T S T S 41,69
GJINF 8 1
GLOBAL 86
GNJFN 72
G O T O Statements, restrictions 16_
GO TO, into a Foreach 92
<go-to-st atemenb 14
GOGTAB 49, 146

.

SAIL

GTAD 81
GTFDB 73
GTJFN 73
GTJFNL 73
GTRPW 120
GTSTS 73
GTTYP 78

handler procedures, Record-class 66
HELP 145

IBP 50
<id-list> 3
identifiers 129
IDPB 5 0
IDTIM 8 1
IF expressions 24
IF statement 15
<ifistatement> 1 4
IFC 60
IFCR 6 1
ILDB 5 0
ILL MEM REF 131
ILLEGAL UUO 131
IN 88, 89, ‘150
IN-CONTEXT 5 1
INCHRS 43, 79
INCHRW 43, 79
INCHSL 43, 79
INCHWL 43, 79
INDEXFILE 7 3
INF 150
INIACS 5 0
initialization 10
INITIALIZATION 11
inner block 1
INOUT 41, 69
INPUT 39, 69, 79
INSTR 43, 79
INSTRL 43, 79
INSTRS 4 4 , 7 9
INT...,APR 1 5 4
INT...,INX 1 5 3
integer constants 129
Integers, range 6
INTER 150
INTERNAL declaration 4, 12
INTERNAL procedures 9
INTERROGATE 111
<interrogate-construct> 110
INTERROGATE, <options> 111, 155
INTERROGATE, set form of 111
INTERROGATE, user defined procedures

for 113
Interrupt codes 153
INTIN 42, 69, 79

168

SAIL- INDEX

INTMAP 1 1 8
INTPRO 1 2 2
INTRPT 1 0 7 , 1 2 1
INTSCAN 4 2
INTSET 1 1 9
INTTBL 1 1 9
INTTY 7 9
IRUN 1 0 8 , 1 5 5
ISTRIPLE 1 2 5
I T E M 8 4
i t e m booleans 1 0 0
<item-expression> 97
<item-primary> 9 7
ITEM-START 86
<item-type> 8 3
Item, <typed-item-expression> 128
Items & Itemvars, distinction between
Items, ANY 99
I tems, BINDIT 9 9
Items, Bracketed Triple 90
items, creation of 84
Items, Datums of 85
Items, declared 84
Items, DELETE 90
Items, implementation 86
Items, internal & external 85
Items, internal &external 87
Items, introduction 83
Items, NEW 98
Items, Pnames 100
Items, props of 100
Items, scope 84
Items, type checking 99
Items, type of 85
Items, with array datums 85 .
ITEMVAR 8 5
<itemvar,type> 8 3
ltemvars & Items, distinction between
Itemvars, CHECKED 85
Itemvars, implementation 87
Itemvars, initialization 86
Itemvars, scope 86
Itemvars, type checking 85,89
Itemvars, types of 85

JFNS. 74
JFNSL 74
JOIN 109

K - O U T 1 5 6
K - Z E R O 156
KAFIX 2 4
~i~-ii(2 4 , 1 3 4
KILLME 1 0 8 , 1 5 5
KPSITIME 12 1

Label use 5
<label-declaration> 3
Labels, as actual parameters 10
Labels, restrictions 16
LAND 27
LDB 50
leap booleans 1 0 0
LEAP-ARRAY 6 1
<leap-expression> 97
<leap-relational> 97
<leap-statement> 88
Leap, introduction 83
LENGTH 48, 125
LEQ 150
LET 10
letters, legal Sail letters 129
LEVTAB 120
LIBRARY 11
Library, runtime 33
LINOUT 40, 69
LIST 86
list booleans 1 0 0
list element designator 128
List element designators 98
list expressions 99
List membership <element> 93
<list-expression> 97
<list-statement> 8 8
list, sublists 9 9
Lists, automatic conversion 89
lists, concatenation 99
lists, initialization 99
Lists, PUT 89
Lists,REMOVE 8 9
LISTX 1 2 5
LNOT 27
LOAD-MODULE 11
LOCATION 28
LODED 44
LOG 52
Logical expressions 27
LOOKUP 36, 69
loop block 19
LOP 48, 98, 125
LOR 27
LSH 27

8 5

8 5

Macro bodies 58
Macro bodies, concatenation in 59
macro body delimiters 57
macro declarations 57
Macro declarations, scope 58
macro parameter delimiters 57
<macro-body> 5 6
<macro-call> 56
Macros with parameters 59

169

I N D E X SAIL

Macros without parameters 57
MAKE 88, 90
MAKE, in a Foreach 95
Matching Procedures 95
Matching procedures, as processes 106
Matching Procedures, sharing memory 96
M A X 2 6
MEMORY 28
MESSAGE 62
MESSAGE procedures 86
M I N 2 6
MKEVTT 1 i o , 123
M O D 2 7
MTAPE 41, 69
M T O P R 7 4
MULTIN 1 1 3
MYPROC ,109

OWN 5

NEEDNEXT 1 9
N E Q 1 5 0
N E W 9 7 , 9 8
N E W - I T E M S 9 8
NEW-PNAME 100, 124
NEW-RECORD 65
NEXT statement 1 9
N I L 9 9
No one to run 107
NOJOY 112
N O M A C 6 2
NdPOLL 1 0 7
NOT 26, 150
NOTCQ 112
notice queue 1 1 0
NOTNOW 1 0 8 , 1 5 5
NOW-SAFE 2 1
NOW-UNSAFE 2 1
NULL DELIMITERS 57
null delimiters mode 57
NULL-CONTEXT 102
NULL-RECORD 64, 65
NULL, definition 130

object 9 1
ODTIM 8 1
O F 1 8 , 2 2
O F C 5 6
OPEN 33, 69
O P E N F 7 4
OPENFILE 7 4
operator precedence 25
O R 2 6 , 1 5 0
OUT 40, 69, 79
OUTCHR 44, 79
outer block 1
OUTSTR 44, 79
OVERFLOW 52

Parameters, default values 7
parametric procedures 9
PBIN 7 9
PBOUT 79
PBTIN 7 9
PHI 99
PMAP 81
Pnames 100
PNAMES 100
POINT 50
POLL 107
Polling points 107
POLLING-INTERVAL 107
<preload,specification> 3
PRELOADed arrays 7
PRESET-WITH 7
PRiNT 5 3
Printnames of items 100
PRIORITY 105(X)
PRIORITY(X) 154
PRISET 109
Procedure body, emptiness 5
Procedure Calls, actual parameters 20
Procedure Calls, semant its 19
<procedure-call> 15
<procedure-declaration> 3, 84
<procedure-head> 4
<procedure-type> 84
Procedures, as actual parameters 20
Procedures, assembly language 13
Procedures, declaration 7
Procedures, defaults in declarations 9
procedures, Leap 86
Procedures, parametric 9
Procedures, restrictions 10
Procedures, restrictions on formal

parameters 7
Procedures, separately compiled 12
procedures, user error 139
process item 104
process procedure 104
Process procedures, Matching 106
Process procedures, recursive 106
<process-statement> 104
Processes, control of scheduling 106
processes, creation of 104
Processes, dependency of 105
Processes, inside recursive procedures 105
PROCESSES, introduction 104
Processes, resumption of 108
Processes, sharable memory 106
Processes, status of 104
Processes, suspension of 108
Processes, termination of 107

170

SAIL _

Program name, for DDT 1
PROf’S 89, 100, 128, 129
PROTECT,ACS 30
Pseudo-teletype functions 44
PSIDISMS 12 1
PSIMAP 1 1 9
PSIRUNTM 12 1
P S O U T 7 9
PSTACK 105(X)
PSTACK(X) 1 5 4
PSTATUS 109
PTY.. . 44
P U T 88,89

QUANTUM 104(X)
QUANTUM(X) 154
quest ion itemvars 95
QUICK-CODE 29

R A I D 1 4 0
R A N 5 2
RCHPTR 75
RDSEG 81
r e a d y 1 0 4
READYME 1 0 8 , 1 5 5
real constants 129
REALIN 42, 69, 79
Reals, range 6
REALSCAN 4 2
RECORD-CLASS 64
RECORD-POINTER 64
RECURSIVE declaration 4
RECURSIVE procedures 8
REDEFINE 58
Reentering programs 137
R E F , I T E M 1 1 4
<ref-item-construct> 114
REFERENCE 7, 9, 20
Reference items 1 1 4
RELBREAK 38
RELD 71 *
RELEASE 35, 69
REMEMBER 101, 102
REMOVE 88,89
REMOVE, in Foreach 93
RENAME 36,69
REPLACE-DELIMITERS 57
REQUIRE 11
REQUIRE - indexed by last word of the require

statement 62
<require-specification> 4
R E Q U I R E S, list of 4
RESCHEDULE -111, 155
rescheduling of processes 106
RESERVED 6 1
Restarting programs 137

INDEX

RESTORE 101, 102
RESUME 108
RESUME, <options> 155
RESUME, <return item> 108
RETAIN 111, 155
retrieval item expression 99
Retrieval Triple <element> 88, 94
RETURN 28
RETURN statement 18
RFBSZ 75
RFCOC 78
RFMOD 79
RFPTR 75
RGCOFF 66
RLJFN 75
RNAMF 75
ROT 27
RPGSW 137
RTIW 1 2 0
RUNME 105, 154
running 104
RUNPRG 82
RUNTM 82
RWDPTR 75

SAFE declaration 4
<safety-statement> 1 5
SAMEIV 1 2 5
satisfier group 93
SAY-WHICH 111, 112, 155
SCAN 40
SCANC 40
SCHEDULE-ON-CLOCK-INTERRUPTS 12 1
scheduling of processes 106
SCHPTR 75
scope, of variables 5
SDSTS 72
SECOND 90, 125
SEGMENT-FILE 11
SEGMENT-NAME 11
SET 86
set booleans 100
Set expressions 99
Set membership <element> 93
<set-expression> 97
<set-statement> 8 8
SETBREAK 3 8
SETC 150
SETCHAN 76
SETCP 112, 126
SETEDIT 7 8
SETFORMAT 46
SETINPUT 7 6
SETIP 113, 126
SETLEX 145
SET0 1 5 0

171

INDEX

SETPL 40, 69
SETPRINT 5 3
Sets, automatic coercion 89
Sets, Derived Sets 99
Sets, initialization 99
Sets, PUT 89
Sets, REMOVE 89
SETSCOPE 1 4 7
S E T S T S 41,69
S F C O C 7 8
S F M O D 7 9
S F P T R 7 5
SHORT 3, 4, 6,24
S H O W 1 4 5
SIMPLE declaration 4
simple expressions 25
SIMPLE procedures 8
<simple- formal - type> 84
<simple-type> 8 3
S I N 5 1
SIND 5 1
SINH 5 1
SINI 7 6 , 7 9
S I R 1 2 0
SIZEF 7 6
SNAIL commands 132
SOS representation 150
SOURCE-FILE 11,62
SPROUT 104
SPROUT DEFAULTS 105
<sprout-default-declaration> 104
SPROUT-DEFAULTS 104
<sprout -statement> 104
SPROUT, <options> 104, 154
S Q R T 5 2
Stanford character set 150
START-CODE 29
START-CODE, calling procedures from 31
<statement> 1
STDBRK 39, 69
S T D E V 7 2
STDIR 8 1
S T E P 1 4
S T E P C 5 6
S T I 7 9
STIW 1 2 0
storage reallocation 137
S T P A R 7 9
String constant, as comment 1
string constants 130
String descriptors 158
STRING-PDL 11
STRING-SPACE 1 1
String, declaration 6
STRINGSTACK 104(X)
STRINGSTACK 1 5 4

SAIL

STSTS 73
STTYP 78
SUBSR 48
SUBST 48
<substring,spec> 2 3
Substrings 27
<sue-fail-statements 8 9
SUCCEED 89, 95, 106
SUCH THAT 88, 150
SUSPEND 108
suspended 104
SUSPHIM 105, 154
SUSPME 105, 154
SWAP 150
Swap statement 15
<swap-statement> 1 4
SWDPTR 75
switches, in command lines 134
symbols, automatic generation of 59
<synonym-declaration> 4
SYSTEM,PDL 11

TANH 51
TELLALL 111, 155
TERMINATE 107
terminated 104
TEXT 145
THAT 88
THEN 14, 15, 22
THENC 56
THIRD 90, 125
time sharing with processes 120
TMPIN 42, 69
TMPOUT 42, 69
TO 23, 27
TRACE 145
TRAPS 145
TRIGINI 5 2
Triple, Binding Boolean 91
<triple> 88
TRIPLES 86
Triples, introduction 83
TRUE, definition 129
TTYIN 44, 79
TTYINL 44, 79
TTYINS 44, 79
TTYUP 44, 79
type checking, itemvars 85
type conversions, algebraic 23
<type-qualifier> 3
typed-item-expression 128
<typed-item-expression> 128
TYPEIT 1 2 3

unbound 91
UNBREAK 146

172

S A I L - INDEX

UNDELETE 76
UNION 150
UNSTACK-DELIMITERS 57
UNTIL 14, 18
UNTILC 5 6
UNTRACE 146
URSCHD 107
U S E R 1 1 1 2
U S E R 2 1 1 2
USERCON 4 8
USERERR 4 9
USETI 4 2 , 6 9
USETO 4 2 , 7 0
UUOFIX 2 4

VALUE 7, 9, 20
va lue 91 1
<var iable> 128
var iables 128
Variables, allocation 1 0
variables, initialization 10
variables, scope 5
VERSION 11, 12

WAIT 111, 155
wait queue 1 1 0
WAITQ 112
WHILE 14
WHILE statement 17
<wFiile,statement> 1 4
WHILEC 6 0
WORDIN 4 0 , 7 0
WORDOUT 41,70

XOR 27, 150

173

